A. 一年级数学教学过程怎么写
一年级的数学教学过程,那么肯定要写一写教学前我都有准备什么,然后上课的时候讲的哪些内容,重点怎么讲的,然后后续还要写总结。
B. 小学一年级数学怎么教
一年级的儿童则对“玩”比较感兴趣,一切以快乐为本,无忧无虑,所以要想教好一年级数学,首先必须激发、培养他们对数学的兴趣。一、创造和谐师生关系,培养学习兴趣一年龄的儿童非常的天真可爱,一般以老师为中心。教师就是学生的表率,时刻都要注意自己的言行举止,一年级教师尤其要注意,去爱每一个学生。在无形中他们也会喜欢你所上的课,对那一门课的学习产生兴趣。如果教师能处处为学生着想,常用微笑的表情,期待的神情,温和的语言创造活跃民主的课堂气氛,理解学生、关心学生爱护学生。二、注意运用生动形象化的教学语言,激发学习兴趣。 一年级的学生处于具体形象的思维阶段,正在从具体的形象思维向抽象的逻辑思维过渡,所以老师在数学教学中应注意采用形象生动的教学语言,既可以激发起学生学习的兴趣和积极性,又可以集中学生的注意力,达到较好的教学效果。例如在教学“4-2”这一减法算式中“-”所表示的意思时,老师可以这样举例说明:“桌上有4个苹果,现在你吃掉2个,还剩多少个?”,“吃掉,少了2个,就是减去2的意思。”所以说“减法中的减号就是拿走、少掉、去掉的意思。”通过具体生动形象的语言,学生就很容易掌握新的知识。所以老师在教学中,在采用生动形象的教学语言的同时,要以学生身边的熟悉的事物为基础。另外,结合本班学生实际来举例说明,更能引起学生的兴趣,集中注意力。二、寓教于趣,激发竞争意识,诱发学生学习的兴趣。一年级的儿童大多数都喜欢讲故事、唱歌、跳舞,喜爱玩耍和参与老师组织的一些表演和游戏是一年级学生最突出的特点。因此,在教学中根据学生的特点,结合教动,能使全体学生在最短时间集中注意,进入课堂活动,一举多得。开火车,即兴表演等手段,使学生在玩耍、表演、游戏中学到知识,使到课堂气氛更加生动活泼,提高学习的效果。例如,在上学期的第一课,认识10以内的数时,我把各数编成一个手指游戏,在游戏中边表演边学习数数,这对刚从幼儿园毕业的孩子来说感到特别亲切,非常兴趣。三、亲自动手,在操作中使学生乐学、会学。一年级的学生都有这样的特点:注意力不容易集中,或集中时间不长,好奇心强、好动,特别是一双手喜欢到处乱摸。根据这些特点,可在教学中让学生亲自动手,进行一些操作性的学习,寓教于玩,使学生在玩耍中学到知识,发展了学生的动作思维,达到了乐学和会学。四、善于表扬与奖励,唤醒学习需要,使学生获得成功感。在教学中,老师要善于对学生进行表扬和奖励,就能调动学生学习的积极性,使他们把学习当成一种乐趣,并能形成一种良好的师生关系。例如:当某个学生能正确地回答老师的问题时,或后进生有了点滴进步时,老师应抓住时机进行表扬和奖励,可以采用鼓掌表扬,或奖励一个小红星、小奖品等形式,让学生获得成功感和满足感。而学生在回答问题时答错了,老师应以鼓励为主,以免打消学生的学习积极性。例如,可以制定一个奖励制度五、人人争当小老师,从小培养自学能力。一年级学生特别对老师崇拜,言听计从,他们都喜欢表现自己、领导别人。因此,做为老师应给学生一个自我表演的舞台,不要约束他们。为了使学生得到更多的机会进行练习、实践,增强学生的自我锻炼,培养学生从小当学习的主人,从小培养自学能力,使课堂的气氛变得轻松、自然、愉快,增添学习兴趣,可采用人人争当小老师的做法。例如在一年级的复习课中,对“10以内数的加法表”的复习,由于学生已掌握了一定的知识,于是我就让学生在课堂上轮流当“老师”,通过一问一答,复习旧知识。在听、练中学会知识,掌握学习方法,寓学习于游戏中。总之,一年级的数学教学,应根据学生的年龄特点,结合教学内容,恰当地运用愉快教学的方法,让学生喜欢数学,才能收到较好的效果。
C. 求一篇小学一年级的数学教学故事.
1、高斯级数小朋友们你们可知道数学天才高斯小时候的故事吗?高斯在小学二年级时,有一次老师教完加法后想休息一下,所以便出了一道题目要求学生算算看,题目是: 1+2+3+4………+96+97+98+99+100=? 本以为学生们必然会安静好一阵子,正要找借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是怎么算的吗?高斯告诉大家他是如何算出的:将1加至100与100加至1;排成两排想加,也就是说: 1+2+3+4+…………+96+97+98+99+100+ 100+99+98+97+96+…………+4+3+2+1 =101+101+101+…………+101+101+101+101 共有一百个101,但算式重复两次,所以把10100除以2便得到答案等于5050。 从此以后高斯小学的学习过程早已经超过了其他的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。
2、鸡兔同笼你听说过“鸡兔同笼”的问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
3、数学优秀小故事:门打开了,进来的是一个年轻的小伙子。刘建明先生请他坐下,小伙子自我介绍说:“我是内地的导游,叫于江,这次我带领了个旅游团到香港来旅游,听说您的大酒店环境舒适,服务周到,我们想住你们酒店。” 刘建明先生连忙热情地说:“欢迎,欢迎,欢迎光临,不知贵团一共有多少人?” “人嘛,还可以,是个大团。” 刘建明先生心里一阵惊喜:一个大团,又一笔大生意,真是太好了。作为一名导游,于江看出刘建明先生的心思,他记上心来,慢条斯理的说:“先生,如果你能算出我们团的人数,我们就住您们大酒店了。” “您请说吧。”刘建明先生自信的说。 “如果我把我的团平均分成四组,结果多出一个人,再把每小组平均分成四份,结果又多出一个人,再把分成的四个小组平均分成四份,结果又多出一个人,当然,也包括我,请问我们至少有多少人?” “一共多少呢?”刘建明先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,应该如何下手呢?”他不愧是精明的生意人,很快就知道了答案:“至少八十五人,对不对?” 于江先生高兴地说:“一点都不错,就是八十五个人。请说说你是怎么算的?” “人数最少的情况下是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)” “好,我们今天就住这里了。” “那你们有多少男的和女的?” “有55个男的,30个女的。” “我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?” “当然是先生您给安排了,但必须男女分开,也不能有空床位。” 又出了个题目,刘建明还从没碰到过这样的客人,他只好又得花一番心思了。冥思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房间,一间5人房间;女的一间11人房间,两间7人房间,一间5人的,一共11间。于江先生看了他的安排后,非常满意,马上办理了住宿手续。一桩大生意做成了,虽然复杂了点,但刘建明先生心里还是十分高兴的。
智斗猪八戒
话说唐僧师徒西天取经归来,来到郭家村,受到村民的热烈欢迎,大家都把他们当作除魔降妖的大英雄,不仅与他们合影留念,还拉他们到家里作客。
面对村民的盛情款待,师徒们觉得过意不去,一有机会就帮助他们收割庄稼,耕田耙地。开始几天猪八戒还挺卖力气,可过不了几天,好吃懒做的坏毛病又犯了。他觉得这样干活太辛苦了,师傅多舒服,只管坐着讲经念佛就什么都有了。其实师傅也没什么了不起的,要不是猴哥凭着他的火眼金睛和一身的本领,师傅恐怕连西天都去不了,更别说取经了。要是我也有这么一个徒弟,也能有一番作为,到那时,哈哈,我就可以享清福了。
于是八戒就开始张落起这件事来,没几天就召收了9个徒弟,他给他们取名:小一戒、小二戒…小九戒。按理说,现在八戒应该潜心修炼,专心教导徒弟了。可是他仍然恶习不改,经常带着徒弟出去蹭吃蹭喝,吃得老百姓叫苦不迭。老百姓想着他们曾经为大家做的好事,谁也不好意思到悟空那里告状。就这样,八戒们更是有恃无恐,大开吃戒,一顿要吃掉五、六百个馒头,老百姓被他们吃得快揭不开锅了。
邻村有个叫灵芝的姑娘,她聪明伶俐,为人善良,经常用自己的智慧巧斗恶人。她听了这件事后,决定惩治一下八戒们。她来到郭家村,开了一个饭铺,八戒们闻讯赶来,灵芝姑娘假装惊喜地说:“悟能师傅,你能到我的饭铺,真是太荣幸了。以后你们就到我这儿来吃饭,不要到别的地方去了。”她停了一下说:“这儿有张圆桌,专门为你们准备的,你们十位每次都按不同的次序入座,等你们把所有的次序都坐完了,我就免费提供你们饭菜。但在此之前,你们每吃一顿饭,都必须为村里的一户村民做一件好事,你们看怎么样?”八戒们一听这诱人的建议,兴奋得不得了,连声说好。于是他们每次都按约定的条件来吃饭,并记下入座次序。这样过了几年,新的次序仍然层出不穷,八戒百思不得其解,只好去向悟空请教。悟空听了不禁哈哈大笑起来,说:“你这呆子,这么简单的帐都算不过来,还想去沾便宜,你们是永远也吃不到这顿免费饭菜的。”“难道我们吃二、三十年,还吃不到吗?”悟空说:“那我就给你算算这笔帐吧。我们先从简单的数算起。假设是三个人吃饭,我们先给他们编上1、2、3的序号,排列的次序就有6种,即123,132,213,231,312,321。如果是四个人吃钣,第一个人坐着不动,其他三个人的座位就要变换六次,当四个人都轮流作为第一个人坐着不动时,总的排列次序就是6×4=24种。按就样的方法,可以推算出:五个人去吃饭,排列的次序就有24×5=120种……10个人去吃钣就会有3628800种不同的排列次序。因为每天要吃3顿钣,用3628800÷3就可以算出要吃的天数:1209600天,也就是将近3320年。你们想想,你们能吃到这顿免费钣菜吗?”
经悟空这么一算,八戒顿时明白了灵芝姑娘的用意,不禁羞愧万分。从此以后,八戒经常带着徙弟们帮村民们干活。他们又重新赢得了人们的喜欢。
取胜的对策
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。如果让你先报数,你第一次应该报几才能一定获胜?
分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。88=9×9+7,依次类推,谁报数后使和为16,谁就获胜。进一步,谁先报7,谁就获胜。于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。这样,当你报第10个数的时候,就会取得胜利。
蜗牛何时爬上井?
一只蜗牛不小心掉进了一口枯井里。它趴在井底哭了起来。一只癞(
lai)蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上,蜗牛被一阵呼噜声吵醒了。一看原来是癞大叔还在睡觉。它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。小朋友你能猜出来,蜗牛需要用几天时间就能爬上井台吗?