导航:首页 > 教学教案 > 苏教版因数与倍数教案

苏教版因数与倍数教案

发布时间:2020-12-21 06:11:02

⑴ 苏教版五年级下数学第三单元因数和倍数应该掌握些什么概念

没有原题,没办法帮你!
求最大公因式和最小公倍数分几种情况:一是,两个专数是倍数关属系,那么小的数是最大公因数,大的数是最小公倍数,二是:两个数互质关系,那么他们的最大公因数是1,最小公倍数是两个数的成绩,三是用短除法求最大公因数和最小公倍数,最大公因数是“乘半边”,最小公倍数是“乘一圈”

⑵ 苏教版四年级数学江苏正卷

1
苏教版四年级下册概念汇总

第一单元

乘法

一、三位数乘两位数笔算

1
、三位数乘两位数,所得的积不是四位数就是五位数。

2
、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相
乘,乘得的积末位和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所
得的积末位和十位对齐,最后把两次乘得的积相加。

二、乘数末尾有
0
的乘法

1
、末尾有
0
的乘法计算方法:先把两个乘数不是零的部分相乘,再看两个乘数
末尾
一共有几个零
,就在积的
末尾加几个零


2.
乘积末尾
0
的个数是由乘数末尾有几个
0
决定的(错误
..

,
因为乘法计算过程
中末尾也会出现
0.

第二单元

升和毫升

一.容量的理解

1.
容量是一个物体可以容纳的体积。

二、升和毫升之间的进率

1

1
升(
L

=1000
毫升(
ml

mL


2.
计量水、油、饮料等液体时,一般用升或毫升做单位。

2
、生活中的升和毫升的运用:生活中一杯水大约
250
毫升;一个高压锅大约盛

6
升;一个家用水池大约盛水
30
升,一个脸盆大约盛水
10
升;一个浴缸大约盛

400
升;一个热水瓶的容量大约是
2
升,一个金鱼缸大约有水
30
升,一瓶饮料大
约是
400
毫升,一锅水有
5
升,一汤勺水有
10
毫升。

3
、一个健康的成年人血液总量约为
4000----5000
毫升。义务献血者每次献血
量一般为
200
毫升。

4

1
毫升大约等于
23
滴水


第三单元

三角形

一、三角形的特征及分类

1
、围成三角形的条件:
两边之和大于第三边


2
、从三角形的一个顶点到对边的
垂直线段
是三角形的

,这条
对边
是三角形的



3
、三角形具有稳定性(
也就是当一个三角形的三条边的长度确定后,这个三角
形的形状和大小都不会改变

,生活中很多物体利用了这样的特性。如:人字梁、斜
拉桥、自行车车架。

4
、三个角都是锐角的三角形是锐角三角形。
(两个内角的和
大于
第三个内角。


5
、有一个角是直角的三角形是直角三角形。
(两个内角的和
等于
第三个内角。
两个锐角的和是
90
度。
两条直角边
互为底和高



6
、有一个角是钝角的三角形是钝角三角形。
(两个内角的和小于第三个内角。


7

任意一个三角形
至少有两个锐角

都有
三条高

三角形的
内角和都是
180


(锐角三角形的三条高都在三角形内;
直角三角形有两条高落在两条直角边上



三角形有两条高在三角形




8
、把一个三角形分成两个直角三角形就是画它的高。

2
二、三角形内角和、等腰三角形、等边三角形

1
、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做
底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,
是轴对称图形,有一条对称轴(跟底边高正好重合。
)三条边都相等的三角形是等边
三角形,三条边都相等,三个角也都相等(每个角都是
60
°,所有等边三角形的三
个角都是
60
°。


2
、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于
45
°,顶
角等于
90
°。

3
、求三角形的一个角
=180
°-另外两角的和

4
、等腰三角形的顶角
=180
°-底角×
2=180
°-底角-底角

5
、等腰三角形的底角
=

180
°-顶角)÷
2
6
、一个三角形最大的角是
60
度,这个三角形一定是等边三角形。

7
、多边形的内角和
=180
°×(
n

2

{n
为边数
}

第四单元

混合运算

一、不含括号的混合运算

四则运算中不含括号时,
先做乘除再做加减


二、含有小括号的混合运算

要先算小括号里面的。

三、含有中括号的混合运算

既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。

第五单元

平行四边形和梯形

一、认识平行四边形

1

两组对边互相平行的四边形叫
平行四边形

它的对边平行且相等,
对角相等。

从一个顶点向对边可以作两种不同的高。

底和高一定要对应。一个平行四边形有无数条高。

2
、用两块
完全一样
的三角尺可以拼成一个平行四边形。

3
、平行四边形容易变形(不稳定性)
。生活中许

多物体都利用了这样的特性。如:
(电动伸缩门、铁拉门、

伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴

对称图形。

二、认识梯形

1
、只有
一组
对边
平行的四边形
叫梯形。平

行的一组对边
较短
的叫做梯形的
上底
,较长的

叫做梯形的
下底

不平行的
一组对边叫做梯形

的腰,两条平行线之间的距离叫做梯形的



无数条



2
、两条腰相等的梯形叫等腰梯形,它的两个底角
相等
,是
轴对称
图形,有一条
对称轴。
直角
梯形有且只有两个直角。

3
、两个
完全一样

梯形
可以拼成一个平行四边形。

4
、正方形、长方形属于
特殊的
平行四边形。

第六单元

找规律

3
1
、搭配型规律:两种事物的个数相乘。
(如帽子和衣服的搭配)

2
、排列:

1
)爸爸、妈妈、我排列照相,有几种排法:
2
×
3



n
×(
n

1
)×……×
1


2

5
个球队踢球,每两队踢一场,要踢多少场:
4+3+2+1
即(
n

1
)+(
n

2
)+……+
1

第七单元

运算律

1
、乘法交换律:
a
×
b=b
×
a
2
、乘法结合律:
(a
×
b)
×
c=a
×
(b
×
c)
3
、乘法分配律:
(a+b)
×
c=a
×
c+b
×
c
(合起来乘等于分别乘)

4
、衍生:
(a-b)
×
c=a
×
c-b
×
c
5
、简便运算典型例题:

102
×
35=

100+2

×
35 36
×
101-36

36
×

101-1

35
×
98=35
×

100-2

=35
×
100-35
×
2

第八单元

对称、平移和旋转

一、轴对称图形

1
、画图形的另一半:

1
)找对称轴(
2
)找对应点(
3
)连成图形。

二、对称轴的条数

1
、正三边形(等边三角形)有
3
条对称轴,正四边形(正方形)有
4
条对称轴,
正五边形有
5
条对称轴,……正
n
变形有
n
条对称轴。

三、平移和旋转

1
、图形的平移,

画平移方向,

把关键的点平移到指定的地方,最后连接成
图。
(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。


2
、图形的旋转,先找点,再把关键的边旋转到指定的地方,
(注意方向和角度)
再连线。
(不管是平移还是旋转,基本图形不能改变。


第九单元

倍数和因数

1

4
×
3=12
,或
12
÷
3=4
。那么
12

3

4

倍数

3

4

12

因数

(倍
数和因数是相互存在的,不可以说
12
是倍数,或者说
3
是因数。只能说谁是谁的倍
数,谁是谁的因数。


2

一个数最小的因数是
1

最大的因数是它本身,
一个数因数的个数是有限的。

18
的因数有:
1

2

3

6

9

18


3

一个数最小的倍数是它本身,
没有最大的倍数。
一个数倍数的个数是无限的

如:
18
的倍数有:
18

36

54

72

90
……(省略号非常重要)

4

一个数最大的因数等于这个数最小的倍数(都是它本身)


5
、是
2
的倍数的数叫做
偶数

(个位是
0

2

4

6

8
的数)

6
、不是
2
的倍数的数叫做
奇数

(个位是
1

3

5

7

9
的数)

7

个位上是
2

4

6

8

0
的数是
2
的倍数

个位上是
0

5
的数是
5
的倍数


8

既是
2
的倍数又是
5
的倍数个位上一定是
0

(如:
10

20

30

40
……)

9

一个数各位上数字的和是
3
的倍数,这个数就是
3
的倍数

(如:
453
各位上
数字的和是
4+3+5=12
,因为
12

3
的倍数,所以
453
也是
3
的倍数。


10

一个数只有
1
和它本身两个因数的数叫素数

或质数

。如:
2

3

5

7

11

13

17

19
……

4

2
是素数中唯一的偶数。
(所以“所有的素数都是奇数”这一说法是错误的。


11

一个数除了
1
和它本身两个因数外,
还有其他的因数的数叫
合数

如:
4

6

8

9

10
……

12

1
既不是素数也不是合数
,因为
1
的因数只有
1
个:
1


素数
只有
2
个因数,合数
至少有
3
个因数
(
如:
9
的因数有:
1

3

9)


13

哥德巴赫猜想:
任何
大于
4
的偶数
都可以表示成
两个奇素数之和
。如
6=3+3
8=3+5

10=5+5,12=5+7
等等。

14

100
以内的素数表

2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

53

59

61

71

73

79

83

89

97

(共
25
个)

15

三个连续的自然数

3

4

5


三个连续奇数

3

5

7


三个连续偶数

4

6

8

的和都是
3
的倍数。

第十单元

用计算器探索规律

1

积的变化规律:


一个因数不变
,另一个因数
乘或除以几
,得到的积等于原来的积
乘或除以几


如:
A
×
B=10
那么
A
×
(B
×
5)=10
×
5 (A
÷
2)
×
B=10
÷
2
②如果两个因数
同时扩大几倍
,得到的积等于原来的积

两个因数分别扩大倍
数的乘积。如:
A
×
B=10
那么
(A
×
2)
×
(B
×
3)=10
×
(2
×
3)
③如果两个因数
同时缩小几倍
,得到的积等于原来的积
除以
两个因数同时缩小
倍数的乘积。如:
A
×
B=10
那么
(A
÷
2)
×
(B
÷
3)=10
÷
(2
×
3)
④如果一个因数扩大几倍,另一个因数缩小相同的倍数,那么积不变。

如:
A
×
B=10
那么
(A
×
3)
×
(B
÷
3)=10
2

商的变化规律:

①被除数和除数同时乘
(
或除以
)
相同的数(
0
除外)

商不变


商不变规律也可以应用于除法计算。在计算两个末尾都有
0
的除法算式中,应
用“被除数和除数除以相同的数,商不变”
,这样计算比较简便。

注意:
被除数的变化会带来
余数的变化
。如:
900
÷
40
,虽然在计算时被除数和

除数同时划去一个零,算到最后一步是
10-8=2
,但是余数并不是
2
,而是
20


②被除数乘(或除以)一个数,除数不变,商也乘几(或除以)几。

③被除数不变,除数乘或除以一个数(
0
除外)
,商也除以几或乘几。

如:
A
÷
B=10
那么
A
÷
(B
÷
2)=10
×
2 A
÷
(B
×
2)=10
÷
2

附:常用数量关系

正方形的面积
=
边长×边长(
S=a
×
a=a
2


正方形的周长
=
边长×
4 (C=a
×
4=4a)
长方形的面积
=
长×宽
(S=a
×
b=ab)
长方形的周长
=
(长
+
宽)×
2 C=(a

b)
×
2
①总价
=
单价×数量

单价
=
总价÷数量

数量
=
总价÷单价

②路程
=
速度×时间

速度
=
路程÷时间

时间
=
路程÷速度

③工总
=
工效×时间

工效
=
工总÷时间

时间
=
工总÷工效

房间面积
=
每块地面砖面积×块数

块数
=
房间面积÷每块面积(简称:大面积除以小面积)
补充:

2
二、三角形内角和、等腰三角形、等边三角形

1
、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做
底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,
是轴对称图形,有一条对称轴(跟底边高正好重合。
)三条边都相等的三角形是等边
三角形,三条边都相等,三个角也都相等(每个角都是
60
°,所有等边三角形的三
个角都是
60
°。


2
、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于
45
°,顶
角等于
90
°。

3
、求三角形的一个角
=180
°-另外两角的和

4
、等腰三角形的顶角
=180
°-底角×
2=180
°-底角-底角

5
、等腰三角形的底角
=

180
°-顶角)÷
2
6
、一个三角形最大的角是
60
度,这个三角形一定是等边三角形。

7
、多边形的内角和
=180
°×(
n

2

{n
为边数
}

第四单元

混合运算

一、不含括号的混合运算

四则运算中不含括号时,
先做乘除再做加减


二、含有小括号的混合运算

要先算小括号里面的。

三、含有中括号的混合运算

既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。

第五单元

平行四边形和梯形

一、认识平行四边形

1

两组对边互相平行的四边形叫
平行四边形

它的对边平行且相等,
对角相等。

从一个顶点向对边可以作两种不同的高。

底和高一定要对应。一个平行四边形有无数条高。

2
、用两块
完全一样
的三角尺可以拼成一个平行四边形。

3
、平行四边形容易变形(不稳定性)
。生活中许

多物体都利用了这样的特性。如:
(电动伸缩门、铁拉门、

伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴

对称图形。

二、认识梯形

1
、只有
一组
对边
平行的四边形
叫梯形。平

行的一组对边
较短
的叫做梯形的
上底
,较长的

叫做梯形的
下底

不平行的
一组对边叫做梯形

的腰,两条平行线之间的距离叫做梯形的



无数条



2
、两条腰相等的梯形叫等腰梯形,它的两个底角
相等
,是
轴对称
图形,有一条
对称轴。
直角
梯形有且只有两个直角。

3
、两个
完全一样

梯形
可以拼成一个平行四边形。

4
、正方形、长方形属于
特殊的
平行四边形。

第六单元

找规律

3
1
、搭配型规律:两种事物的个数相乘。
(如帽子和衣服的搭配)

2
、排列:

1
)爸爸、妈妈、我排列照相,有几种排法:
2
×
3



n
×(
n

1
)×……×
1


2

5
个球队踢球,每两队踢一场,要踢多少场:
4+3+2+1
即(
n

1
)+(
n

2
)+……+
1

第七单元

运算律

1
、乘法交换律:
a
×
b=b
×
a
2
、乘法结合律:
(a
×
b)
×
c=a
×
(b
×
c)
3
、乘法分配律:
(a+b)
×
c=a
×
c+b
×
c
(合起来乘等于分别乘)

4
、衍生:
(a-b)
×
c=a
×
c-b
×
c
5
、简便运算典型例题:

102
×
35=

100+2

×
35 36
×
101-36

36
×

101-1

35
×
98=35
×

100-2

=35
×
100-35
×
2

第八单元

对称、平移和旋转

一、轴对称图形

1
、画图形的另一半:

1
)找对称轴(
2
)找对应点(
3
)连成图形。

二、对称轴的条数

1
、正三边形(等边三角形)有
3
条对称轴,正四边形(正方形)有
4
条对称轴,
正五边形有
5
条对称轴,……正
n
变形有
n
条对称轴。

三、平移和旋转

1
、图形的平移,

画平移方向,

把关键的点平移到指定的地方,最后连接成
图。
(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。


2
、图形的旋转,先找点,再把关键的边旋转到指定的地方,
(注意方向和角度)
再连线。
(不管是平移还是旋转,基本图形不能改变。


第九单元

倍数和因数

1

4
×
3=12
,或
12
÷
3=4
。那么
12

3

4

倍数

3

4

12

因数

(倍
数和因数是相互存在的,不可以说
12
是倍数,或者说
3
是因数。只能说谁是谁的倍
数,谁是谁的因数。


2

一个数最小的因数是
1

最大的因数是它本身,
一个数因数的个数是有限的。

18
的因数有:
1

2

3

6

9

18


3

一个数最小的倍数是它本身,
没有最大的倍数。
一个数倍数的个数是无限的

如:
18
的倍数有:
18

36

54

72

90
……(省略号非常重要)

4

一个数最大的因数等于这个数最小的倍数(都是它本身)


5
、是
2
的倍数的数叫做
偶数

(个位是
0

2

4

6

8
的数)

6
、不是
2
的倍数的数叫做
奇数

(个位是
1

3

5

7

9
的数)

7

个位上是
2

4

6

8

0
的数是
2
的倍数

个位上是
0

5
的数是
5
的倍数


8

既是
2
的倍数又是
5
的倍数个位上一定是
0

(如:
10

20

30

40
……)

9

一个数各位上数字的和是
3
的倍数,这个数就是
3
的倍数

(如:
453
各位上
数字的和是
4+3+5=12
,因为
12

3
的倍数,所以
453
也是
3
的倍数。


10

一个数只有
1
和它本身两个因数的数叫素数

或质数

。如:
2

3

5

7

11

13

17

19
……

4

2
是素数中唯一的偶数。
(所以“所有的素数都是奇数”这一说法是错误的。


11

一个数除了
1
和它本身两个因数外,
还有其他的因数的数叫
合数

如:
4

6

8

9

10
……

12

1
既不是素数也不是合数
,因为
1
的因数只有
1
个:
1


素数
只有
2
个因数,合数
至少有
3
个因数
(
如:
9
的因数有:
1

3

9)


13

哥德巴赫猜想:
任何
大于
4
的偶数
都可以表示成
两个奇素数之和
。如
6=3+3
8=3+5

10=5+5,12=5+7
等等。

14

100
以内的素数表

2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

53

59

61

71

73

79

83

89

97

(共
25
个)

15

三个连续的自然数

3

4

5


三个连续奇数

3

5

7


三个连续偶数

4

6

8

的和都是
3
的倍数。

第十单元

用计算器探索规律

1

积的变化规律:


一个因数不变
,另一个因数
乘或除以几
,得到的积等于原来的积
乘或除以几


如:
A
×
B=10
那么
A
×
(B
×
5)=10
×
5 (A
÷
2)
×
B=10
÷
2
②如果两个因数
同时扩大几倍
,得到的积等于原来的积

两个因数分别扩大倍
数的乘积。如:
A
×
B=10
那么
(A
×
2)
×
(B
×
3)=10
×
(2
×
3)
③如果两个因数
同时缩小几倍
,得到的积等于原来的积
除以
两个因数同时缩小
倍数的乘积。如:
A
×
B=10
那么
(A
÷
2)
×
(B
÷
3)=10
÷
(2
×
3)
④如果一个因数扩大几倍,另一个因数缩小相同的倍数,那么积不变。

如:
A
×
B=10
那么
(A
×
3)
×
(B
÷
3)=10
2

商的变化规律:

①被除数和除数同时乘
(
或除以
)
相同的数(
0
除外)

商不变


商不变规律也可以应用于除法计算。在计算两个末尾都有
0
的除法算式中,应
用“被除数和除数除以相同的数,商不变”
,这样计算比较简便。

注意:
被除数的变化会带来
余数的变化
。如:
900
÷
40
,虽然在计算时被除数和

除数同时划去一个零,算到最后一步是
10-8=2
,但是余数并不是
2
,而是
20


②被除数乘(或除以)一个数,除数不变,商也乘几(或除以)几。

③被除数不变,除数乘或除以一个数(
0
除外)
,商也除以几或乘几。

如:
A
÷
B=10
那么
A
÷
(B
÷
2)=10
×
2 A
÷
(B
×
2)=10
÷
2

附:常用数量关系

正方形的面积
=
边长×边长(
S=a
×
a=a
2


正方形的周长
=
边长×
4 (C=a
×
4=4a)
长方形的面积
=
长×宽
(S=a
×
b=ab)
长方形的周长
=
(长
+
宽)×
2 C=(a

b)
×
2
①总价
=
单价×数量

单价
=
总价÷数量

数量
=
总价÷单价

②路程
=
速度×时间

速度
=
路程÷时间

时间
=
路程÷速度

③工总
=
工效×时间

工效
=
工总÷时间

时间
=
工总÷工效

房间面积
=
每块地面砖面积×块数

块数
=
房间面积÷每块面积(简称:大面积除以小面积)

⑶ 小学苏教版五年级数学下册第三单元测试卷

五下数学第三单元测验卷
班级 姓名 学号 得分

一、 填空。(16分)
1.请你写出5个连续的12的倍数( )

2.所有自然数的公因数是( )。

3.12的因数有( ),18的因数有( ),12和18的公因数有( ),12和18的最大公因数是( )。

4.8与9的最大公因数是( ),最小公倍数是( )。
24与51的最大公因数是( )。

5.两个连续偶数的和是30,它们的最大公因数是( )。

6.(1)在括号里填一个数,使得这两个数的最大公因数是1。
3和( ) 8和( ) 15和( )
(2)在括号里填一个数,使得这两个数的最小公倍数是所填的数。
5和( ) ( )和12 ( )和24

二、选择。(8分)。
1、15和21的( )是1。
A、倍数 B、公因数 C、最大公因数 D、最小公倍数

2、用长6厘米,宽4厘米的长方形可拼成边长是( )厘米的正方形。
A、9 B、12 C、15 D、16

3、a=3b,a,b都是大于0自然数,则a,b的最小公倍数是( )。
A、a B、b C、3 D、1

4、有一个比20小的数,它既是3的倍数,又是4的倍数,这个数是( )。
A、18 B、16 C、12 D、15

四、判断题。(10分)
1.3和5没有公因数。 ( )

2.若甲是乙的倍数,则甲是甲和乙的最小公倍数。 ( )

3.两个数的最大公因数一定比这两个数都小。 ( )

4.两个数的最小公倍数一定比这两个数都大。 ( )www.

5.18的最大公因数和最小公倍数相等。 ( )

五、 直接写出各组数的最大公因数。(12分)
3和5 4和8 18和45

13和26 1和13 34和91

六、直接写出各组数的最小公倍数。(12分)
6和12 7和8 8和12

9和15 12和10 14和35

七、解决问题。(42分)
1. 有两根绳子,一根长16米,另一根长20米。现在要把它们剪成同样长的小段,每段要尽可能长,且没有剩余。每段绳子长多少米?

2. 把一张长为30厘米,宽为25厘米的长方形纸裁成同样大小,面积尽可能大的正方形,且没有剩余,至少可以裁多少个?

3. 假期小红、小明、小亮都去图书馆借书,小红每4天去一次,小明每6天去一次,小亮每3天去一次,7月6日三人第一次在图书馆见面,几月几日他们会第二次相遇呢?

4. 学生参加跑步比赛,每组5人或每组7人都少2人,共有多少人?

5. 把48块糖和38块巧克力分别分给同一组同学,结果糖剩3块,巧克力少了2块,这个组最多有几名同学?

6. 一个长方形纸片28厘米。宽22厘米,如右图,在纸的四边留2厘米的空白,然后把中间的长方形平均分成若干个相同的正方形,问正方形的边长最大是多少厘米?

⑷ 能给我一份苏教版小升初数学复习资料吗 急急急!!!

体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh

算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c

分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数

长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤


什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。

倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数

整除
如果c|a, c|b,那么c|(a±b)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=1, 那么bc|a
如果c|b, b|a, 那么c|a

小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
编辑本段关键问题
确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和 相遇时间×速度和=相遇路程
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
编辑本段追及问题
追及时间=路程差÷速度差 速度差=路程差÷追及时间 追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
编辑本段流水问题
顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 船速:(顺水速度+逆水速度)÷2
编辑本段解题关键
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式: 顺水速度=船速+水速,(1) 逆水速度=船速-水速.(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。 根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度-船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速-逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。 另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)÷2, 水速=(顺水速度-逆水速度)÷2。
工程问题公式
(1)一般公式:
工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷ 工作时间=工作效率
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
总数÷总份数=平均数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、加数+加数=和 和-一个加数=另一个加数
6、被减数-减数=差 被减数-差=减数 差+减数=被减数
7、因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
数学图形计算公式
1、正方形:C-周长 S-面积 a-边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a=a2
2、正方体:V-体积 a-棱长
表面积=棱长×棱长×6 S表=a×a×6=6a2
体积=棱长×棱长×棱长 V=a×a×a=a3
3、长方形: C-周长 S-面积 a-边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
五、习题答题要点

(一) 名词解释
1. 统计表:将统计资料及其指标以表格形式列出,称为统计表(statistical table)。狭义的统计表只表示统计指标。
2. 统计图:统计图(statistical graph)是将统计指标用几何图形表达,即以点的位置、线段的升降、直条的长短或面积的大小等形式直观的表示事物间的数量关系。
(二) 简答题
1. 统计表可以代替冗长的文字叙述,便于指标的计算、分析和对比,其制作合理与否,对统计分析质量有着重要的影响。
统计图可用点的位置、线段的升降、直条的长短和面积的大小直观地反映分析事物间的数量关系。因统计如对数量表达较粗略,故最好附上相应的统计表。
2. 一般说来,统计表由标题、标目、线条、数字四部分构成(有时附有备注)。
编制统计表的注意事项:
(1) 标题概括表的内容,写于表的上方,通常需注明时间与地点。
(2) 标目以横、纵标目分别说明主语与谓语,文字简明,层次清楚。
(3) 线条不宜过多,通常采用三条半线表示,即顶线、底线、纵标目下的横隔线及合计上的半条线 。
(4) 表内一律采用阿拉伯数字。同一指标小数点位数要一致,数次要对齐。表内不留空格。
(5) 备注不要列于表内,如有必要,可在表内用“ * ”号标记,并在表外加以说明。
3. 统计图通常由标题、标目、刻度和图例四部分组成。
绘制统计图的注意事项:
(1) 根据资料的性质和分析目的,选择合适的图形。
(2) 标题应扼要的说明图的内容、地点、时间,位于图的下方,一般需注明时间、地点。
(3) 统计图有纵轴和横轴,两轴应有标目,标目应注明单位。纵轴尺度自下而上,横轴尺度从左到右。数字一律由小到大,某些图要求纵轴尺度从0开始
(4) 图的长宽比例(除圆图外)一般以7:5或5:7左右较美观。
(5) 比较不同事物时,可用不同的线条或颜色表示,但需用图例说明,一般放在图的右上角或图下方的适当位置。
半对数线图是以横轴为算术尺度,纵轴为对数尺度绘制而成。它表明数量间比例的动态变化趋势,如速率比A/B,设X=A/B,利用对数运算法则,lgX= lgA – lgB,即将纵轴上尺度的倍比关系用对数值之差表示,所以它反映的是A , B两事物现象间相互对比发展速度的变化。

⑸ 苏教版五年级数学简报怎么做

第一单元:图形的变换
轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。
轴对称图形的特征:1、对称点到对称轴的距离相等;
2、对应点连线与对称轴互相垂直。
旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。
第二单元:因数与倍数
因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。
为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。
一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。
个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。

四则运算中的奇偶规律:

奇数+奇数=偶数
奇数-奇数=偶数
奇数×奇数=奇数
偶数+偶数=偶数
偶数-偶数=偶数
偶数×偶数=偶数
奇数+偶数=奇数
奇数-偶数=奇数
奇数×偶数=偶数

偶数-奇数=奇数

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数,也不是合数。
自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。
100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元:长方体和正方体
正方体也叫立方体。
长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。
正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。
长方体的棱长总和=(长+宽+高)×4
正方体的棱长总和=棱长×12
长方体六个面的面积总和叫做长方体的表面积。
上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长2×6
“有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4
长方体的侧面积=底面周长×高
物体所占空间的大小,叫做物体的体积。
常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。
棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。
长方体的体积=长×宽×高;用字母表示是V=abh
正方体的体积=棱长3;用字母表示是V=a3
长方体(或正方体)的体积=底面积×高=横截面积×长
在工程上,1立方米简称1方。
1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。
棱长总和相等的长方体或正方体,正方体的体积最大。
1立方米=1000立方分米;1立方分米=1000立方厘米。
每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。
容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。
计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。
1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。
长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。
浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度
怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。
第四单元:分数的意义和性质
一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。
5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。
求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。
分子比分母小的分数叫真分数。真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。
把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
整数可以看成分母是1的假分数。例如5可以看成是5/1。
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。
几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。
求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。
公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。
除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。
如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。
如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。
数A×数B=它们的最大公因数×它们的最小公倍数。
两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。
如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。
两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。

⑹ 苏教版四年级下册数学复习资料

苏教版四年级数学下册复习知识点
三位数乘以两位数

1. 三位数乘以两位数
(1) 三位数乘以两位数的积可能是4位或5位数.
(2) 笔算方法:用两位数的个位和十位依次去乘三位数,用哪一位上的数去乘,乘得的积就和哪一位对齐.,最后把两次的积加起来

拓展:
多位数乘以多位数的笔算算法
[列竖式时,把位数多的写到上面(第一个乘数),位数少的写到下面(第二个乘数)]

用位数少那个乘数(即第二个乘数)从低位到高位每一位上的数分别去乘位数多的乘数(第一个乘数),每次用哪一位上的数去乘第一个乘数,用哪一位上的数去乘,乘得的积就和哪一位对齐.,最后把几次的积加起来.

(3) 末尾有0的乘法可以先把0前面的数相乘,最后再加上相应个数和0.
即隔开0来做乘法,(如350×80可以看作35×8再在最后的结果上补上两个0即可)

需要注意的是列竖式时,要把位数多的写到上面,如果位数的数末尾含有0时,可以隔开0来再看前面是几位数,再列竖式计算。如300×26,应当把26写到上面,300写到下面(3写到6下面,00在后面)。

运算律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变.
用字母表示即为: a+b=b+a.

2. 乘法交换律:
两个数相乘,交换乘(因)数的位置,它们的积不变.
用字母表示即为: axb=bxa

3. 加法结合律:
三个数相加,先把前面两个数相加,再加第三个数,或者先把后面两个数相加,再和第一个数相加,它们的和不变。
用字母表示即为:
(a+b)+c=a+(b+c)

拓展:三个数相加,可以把任意的两个数相加再与第三个数相加.
用字母表示即为:
(a+b)+c=a+(b+c)=(a+c)+b

4. 乘法结合律:
三个数相乘,先把前面两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。
用字母表示即为:(axb)xc=ax(bxc)

5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。
(a+b)×c=a×c+b×c

拓展:
(1)左右分配律
左分配律:cx(a+b) = cxa+cxb
右分配律:(a+b)xc = axc+bxc
(2)两个数的差与一个数相乘,可以把两个减数分别与这个数相乘,再把两个积相减。用字母表示即为:(a- b)xc=a×c-b×c

升和毫升
 升 : 用字母 L 表示.
 毫升: 用字母 mL 表示.
1升= 1000毫升 即进率为1000.
1 L = 1000 mL .

倍数和因数
1. 倍数
若a×b=c ( 也可以是c ÷ a = b)
则 c是a和b的倍数。
例1. 3×5=15,则15是3和5的倍数,15是3的5倍,15是5的3倍;
例2. 24÷3=8,则24是3和8的倍数,24是3的8倍,24是8的3倍;

 一个数最小的倍数是它本身,没有最大的倍数,一个数的倍数个数是无限的。
 写出一个数的有限个倍数
从这个数乘1,2,3,4……开始往上乘并写出来即可;

 2的倍数
个位是0,2,4,6,8的数都是2的倍数,即偶数
个位是1,3,5,7,9的数是奇数。

 5的倍数
个位是0,5的数都是5的倍数。

 3的倍数
各位上数的和是3的倍数(即各位上数的和能整除3)的数都是3的倍数。
例456是3的倍数,(4+5+6=15,15/3=5。)

注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。

同时是2和5和倍数的数个位上必为0,
同时是2,3,5的倍数的数最小是30

2. 因数
若a×b=c( 也可以是c ÷ a = b)
则 a和b是c的因数。
例3. 3×5=15,则3和5是15的因数;
例4. 24÷3=8,则3和8是24的因数;

 一个数最小的 因数 是1,最大的因数是它本身,一个数的因数个数是有限的。
 写出一个数的所有因数
写出所有两个数乘积能得到这个数的=所有乘数

例、写出36的所有因数
36 = 1×36
=2×18
= 3×12
= 4×9
= 6×6
即36的因数有:1,2,3,4,6,9,12,18,36.

3. 素数(质数) 与 合数

只有1和它本身两个因数的数叫素数(也叫质数);
除了1和它本身两个因数外还有其它因数的数叫合数;

1的因数只有1个即1,1即不是素数也不是合数。

素数通常是奇数,2除外;
5的倍数中只有5是素数;

三角形
三角形有3条边,3个顶点,3个角,3条高

1. 三角形分类
(1)按角度分
a.锐角三角形:三个角都小于90度 。(三个角都为锐角,等边三角形也是锐角三角形。)

b.直角三角形:有一个角等于90度的三角形。(有一个角是直角)

c.钝角三角形:有一个角大于90度的三角形。 (有一个角是钝角)

*(锐角三角形和钝角三角形可统称为斜三角形)

(2)按边分
a.等腰三角形 : 有两条边或两个角相等的三角形
b.等边三角形 :三条边都相等或三个角都是60度的三角形 (等边三角形是一种特殊的等腰三角形)
c.任意三角形 : 除了等腰、等边三角形外的三角形,

等腰三角形的角度
顶角 = 180°-﹙2×底角﹚
底角 =(180°-顶角)÷2

 三角形的两边的和一定大于第三边 ,三角形的两边的差一定小于第三边。

 三角形内角和等于180度

 一个三角形的3个内角中最少有2个锐角。

三角形的周长 = 三边之和
三角形的面积 = (底×高)÷2

平行四边形和梯形
1. 平行四边形
两组对边平行且相等的四边形叫平行四边形

长方形和正方形是特殊的平行四边形

平行四边形的周长 = 四边之和
平行四边形的面积 = 底×高

2. 梯形
一组对边平行且不相等,另一边不平行的四边形叫梯形。
直角梯形:有一个角是直角的梯形

梯形的周长 = 四边之和
梯形的面积 = (上底+下底)×高÷2

请采纳!

阅读全文

与苏教版因数与倍数教案相关的资料

热点内容
北京高中作文耐心 浏览:59
变作文600字初中 浏览:660
2011台州中考语文 浏览:250
识字一的教案 浏览:85
语文作业本凡卡答案 浏览:619
300书信作文大全 浏览:227
苏教版五年级语文下册补充成语ppt 浏览:891
爱的方式作文开头结尾 浏览:694
端午节的作文600字初中 浏览:70
3年级上册语文作业本答案 浏览:265
高考语文与小学的联系 浏览:965
2015北京语文中考答案 浏览:979
双分点地步法教学 浏览:714
小学二年级作文辅导课 浏览:693
关于成功条件的作文素材 浏览:848
建军节作文的结尾 浏览:88
五年级下册语文mp3在线收听 浏览:696
ie教案6 浏览:907
三年级语文培优补差计划 浏览:679
二胡独奏一枝花教学 浏览:525