导航:首页 > 教学教案 > 数学变式教学

数学变式教学

发布时间:2020-12-18 02:48:09

『壹』 数学变式教学

数学教学思维能力培养之我见

对学生思维能力的培养是数学教学三大能力之一.在平时的教学中,既要注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养。特别是直觉思维能力的培养由于长期得不到重视,学生在学习的过程中对数学的本质容易造成误解,认为数学是枯燥乏味的;同时对数学的学习也缺乏取得成功的必要的信心,从而丧失数学学习的兴趣。培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求。
一、数学直觉思维的阐释
数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。
直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。而直觉的研究对象则是抽象的数学结构及其关系。庞加莱说:直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把千角形作为一个特例包括进来。由此可见直觉是一种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景。正如迪瓦多内所说:这些富有创造性的科学家与众不同的地方,在于他们对研究的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓’直觉’……,因为它适用的对象,一般说来,在我们的感官世界中是看不见的。
从思维方式上来看,思维可以分为逻辑思维和直觉思维。长期以来人们刻意的把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是割离的。有一种观点认为逻辑重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念都是基于直觉,数学在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。
一个数学证明可以分解为许多基本运算或许多演绎推理元素,一个成功的数学证明是这些基本运算或演绎推理元素的一个成功的组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和演绎推理元素就是这条通道的一个个路段,当一个成功的证明摆在我们面前开始,逻辑可以帮助我们确信沿着这条路必定能顺利的到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道。事实上,出发不久就会遇上叉路口,也就是遇上了正确选择构成通道的路段的问题。庞加莱认为,即使能复写出一个成功的数学证明,但不知道是什么东西造成了证明的一致性,……,这些元素安置的顺序比元素本身更加重要。笛卡尔认为在数学推理中的每一步,直觉力都是不可缺少的。就好似我们平时打篮球,要靠球感一样,在快速运动中来不及去作逻辑判断,动作只是下意识的,而下意识的动作正是在平时训练产生的一种直觉。
在教育过程中,老师由于把证明过程过分的严格化、程序化。学生只是见到一具僵硬的逻辑外壳,直觉的光环被掩盖住了,而把成功往往归功于逻辑的功劳,对自己的直觉反而不觉得。学生的内在潜能没有被激发出来,学习的兴趣没有被调动起来,得不到思维的真正乐趣。《中国青年报》曾报道,约30%的初中生学习了平面几何推理之后,丧失了对数学学习的兴趣,这种现象应该引起数学教育者的重视与反思。

『贰』 如何在数学课堂中实施变式教学

在形成数学概念的过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生版正确概括权的思维能力。 从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,

『叁』 如何在初中数学课中进行变式教学

一、递进变异

递进变异是指题目由特殊到一般的变异,而解题需要的基础知识保持不变。一是题目的条件由特殊到一般,由简单到复杂变异,这样可形成递进式变式题组。递进式变式题组是指在课堂教学中,为了达到某一教学目的,根据学生的认知规律,合理、有效地设计一组数学问题,且这组数学问题又有一定的内在逻辑联系,即前一个问题是后一个问题的特殊情况,后一个问题是前一个问题的一般的、情况,这样由特殊到一般的题目组合称为递进式变式题组。这种递进式变式题组,层层递进,由浅入深,由简到繁,循序渐进,螺旋式上升,有利于学生对问题本质的深刻理解,进而掌握解题规律、突破教学难点。二是在解题的一般规律不变的情况下,通过变化非本质属性,有利于学生从中分离出一般的规律。三是有利于不同层次的学生。由于问题由简单到复杂,可使不同层次的学生顺着台阶一步步的往上爬,并从中掌握一般规律。例如,在“分式”的教学中,设计如下作业。

案例1:


六、几点思考

第一,基于变异理论进行变式教学,题目的变异要围绕不变的本质而展开。变异的目的是要学生通过几个实例发现并总结、归纳出解决问题的一般性原理(规律). 因此,在进行变异时,首先要明确问题的本质,然后围绕问题的本质不变,变化非本质属性,以突出问题的本质属性,使此类问题的一般性原理凸出出来。

第二,重复有利于提高学生数学知识的记忆强度。变异是在本质不变的情况下展开的,也就是说学生解答此类问题运用的思想方法是相同的. 因此,学生要重复使用相同的原理解答题目,是一种重复的思维活动。认知心理学的研究表明,重复可以增强学生对知识的记忆,能够使长时记忆中的记忆强度增加,即记忆的痕迹大,这样在学生解答其他问题时,便于从长时记忆中提取需要迁移的信息,从而提高分析问题和解决问题的能力。

第三,变异有利于不同层次学生发现并总结掌握问题的一般原理。学生之间的差异是客观存在的,不同的学生其解决问题的能力,以及归纳、概括的能力是不同的. 因此,在进行题目变异时,要使题目有一定的梯度,也就是要递进式变异,由简单到复杂,从而使不同层次的学生都能够从中分析并发现一般性的原理。

『肆』 如何在变式教学中培养学生的数学思维能力

数学思维是人脑与数学对象交互作用并按照一般思维规律认识数学内容的内在理性活动.在公式、定理、性质的教学过程中,教师精心编制一系列由简单到复杂的变式训练题,组织学生进行尝试练习,引导学生参与知识的发现、探索、推导过程,可以提高思维的探究水平,更可以掌握具有广泛性的思维方法.
一、问题提出的背景
学生数学学习的认知水平一般分为三个层次:记忆模仿型、说明性理解型与探究性理解型.为了培养与提高学生的数学思维能力,引导学生向探究性理解型发展,教师在课堂教学中,要敢于和善于给学生提供一定的独立思考、发现问题的条件和机会.适当地进行变式训练、一题多解、一法多用,可以让学生形成富于联想的思维习惯.数学公式作为解题的工具,深刻理解并准确掌握数学公式是学好数学的第一关.数学公式应用广泛,推导方法具有代表性,所以人们把它比喻为“数量关系的精髓”.在一般的数学教学中,我们通常是推导公式,首先教师讲解例题进行示范,然后学生模仿反复练习.一两堂课下来,学生对数学课的印象就是推导公式、代公式解题,纯粹把数学课看成做题目的枯燥无味的课,长此以往,对数学课就越来越没兴趣.如何提高学生学习数学的兴趣,让学生真正地参与课堂,在实践中培养学生的数学思维,是数学老师一直思考的问题.
二、案例再现
以五年制高等师范数学教材中的“二倍角的三角函数”这节内容为例,老师在引导学生推导出公式后,对公式进行变形研究,使学生能够找到它的一些其他形式并进行相应的应用.这样既能深刻理解公式,又可灵活应用于解题,课堂气氛热烈,学生学习积极性高.
公式的导出部分老师让学生利用学过的正弦、余弦和正切的和角公式,化归为二倍角公式,让学生理解“二倍角” 与 “两角和” 的内在联系.
在公式的运用应用部分,老师是这样设计的:
提问:二倍角公式结构特征有哪些?
师生互动:教师在黑板上板书且同时启发学生注意公式结构中等号两边角度倍数的对比、系数的对比、幂次数的对比,学生思考并回答问题以达到熟练公式结构的目的.学生通过观察比较,能很快地归纳出二倍角公式的结构特征.为了能很好地巩固和理解公式中“二倍角”含义,也为下面灵活应用公式化解和求值做准备,教师设置了以下练习:梯度一 (让学生理解倍角的相对性)
在以上问题中主要突出的是倍角的相对性,以及公式左右两边的角的变化.为了进一步巩固所学公式与更深入熟练地掌握公式变形,特意由浅入深设计以下课堂练习以达到相关目的.学生对比二倍角公式的形式特点,基本能准确地填出结论,并且在给出结论的同时也真正理解了“二倍”的含义.二倍角的正弦公式、余弦公式是三角恒等变换中的重要公式,在理解和掌握公式的基础上,若能对公式作一些变形,并在解题中予以灵活运用,则可激活思维,化繁为简,使得解题过程更加简洁明快.教师在学生理解梯度一的基础上,再设计了以下两组变式训练:梯度二:(熟练公式结构并会用公式的逆用)
经过三个梯度的训练,学生对公式的结构与公式的应用达到基本熟练之后,下一步就可以提供机会让学生利用倍角公式进行求值运算、以培养学生运算、分析和逻辑推理能力,可以很好地完成本节课的教学目标之一与难点之一.
三、案例教学反思
上课班级的学生基础相对较好,特别是男生,如果纯粹是讲公式后让学生模仿做题目,学生没有独立思考的机会,没有亲自体验公式和概念的形成过程,只能是做题目的机器,对知识一知半解,更不用说学以致用了.学生也会觉得没有挑战性,从而对数学学习缺乏积极性.学生只有在亲自实践中才能获取新知识的能力、分析解决问题的能力,以及交流与合作的能力.老师在教学中对二倍角公式的深化变式,让学生积极思维,既提高了学习的积极性,又加强了对公式的理解和应用.
数学的公式有很多的变式,这些变式为学生提供了广阔的天地,同时在公式的变式过程中可以充分体现数学公式的转化和简化功能,从而有利于学生更深刻地理解数学公式的本质.通过探求公式的变式的应用,可以培养学生直觉思维、快速解题的能力,有利于培养学生的逆向思维、发散思维等,形成良好的思维品质.
(一)公式的变式应用可以培养学生简单的直觉思维能力和解题能力
直觉思维是导致数学发现的关键,教师在教学中,鼓励学生猜想,形成朦胧的直觉.让学生猜想,不仅激发了他们努力解题,还教会了他们一种应用的思维方式.二倍角公式的熟练应用对于学习三角函数的性质起着很重要的作用.如学习y=sin2x的图像及性质.再如梯度三中的练习sinπ16cosπ16cosπ8,学生看到相同的角,会联想到正弦的二倍角公式,猜想填个系数即可,学生在掌握了二倍角公式的逆向变形特点后,就能很快的与公式进行对比,从而找到系数上的差别,并相应的进行增添,就可以很方便得出答案.(sinα-cosα)2和cos4β-sin4β的解题学生根据做题目的直觉经验,自然会想到先用完全平方和平方差公式展开求解,教师再有意识地引导他们向纵深方向考虑,帮助理清来龙去脉,总结出方法和结论,学生的解题能力也会逐步提高.在教学过程中,有时设置一些顺理成章的“陷阱”也是有益的,可以引导学生积极思维,在猜想、探究、修改的过程中加深对知识的理解和掌握.
(二)公式的变式应用可以培养学生的逆向思维能力
人们习惯于沿着事物发展的正方向去思考问题并寻求解决办法.其实,对于某些问题,尤其是一些特殊问题,从结论往回推,倒过来思考,从求解回到已知条件,反过去想或许会使问题简单化.数学教学中可表现为某些数学公式、法则等逆用来解决有关问题.如二倍角这节课中,很多学生对于数学课本中的公式很熟练,但对它们的逆向运用却往往忽视.因此,老师在二倍角公式教学中,贯穿双向思维训练,除了让学生理解概念本身及其常规应用外,还注意引导启发学生反过来思考,从而加深对概念的理解与拓展.如梯度一和梯度二的设计,这样正向和逆向叙述相结合,使学生对公式的理解更加深刻,知识掌握得更加灵活,对数学思维的训练也起着重要的作用.
(三)公式的变式应用可以培养学生的发散思维能力
赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”.在课堂教学中应该适当给学生提供独立思考问题、自己提问题的条件与机会为发散思维的培养创造良好的内、外部的环境.老师在教学过程给出(sinα-cosα)2 和cos4β-sin4β题目给出后,没有直接板书讲解,而是让学生讨论,给学生提供探索尝试的机会.学生们跃跃欲试,积极动脑,一部分学生能自己利用二倍角公式和平方公式推算出结论,运用已学知识去解决新问题,并进行多种尝试,学生的解题思维得到拓展,学习积极性提高.如果老师怕学生在课堂上听不懂、吃不饱,总是在课堂上讲个不停,即使提出问题也是匆匆而过,学生没有进行充分思考问题的时间,这样培养的学生也不可能具有探究性思考的习惯与能力,当然谈不上培养发散思维了.
数学教学就是数学思维活动的教学.因此,在数学教学中展现思维活动,教师在课堂教学中应该精心设计,给学生充分思考问题的机会和时间,让学生亲自参与思维活动,不仅体现了这种教学思想,而且有利于提高学生的思维的探究水平,从而提高学生学习数学的兴趣.

『伍』 怎样在中学数学教学中进行变式训练

所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。
变式其实就是创新。当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。通过多问、多思、多用等激发学生思维的积极性和深刻性。下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、在形成数学概念的过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。
从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。
通过对式子的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。
二、在理解定理和公式的过程中,利用变式使学生深刻认知定理和公式中概念间的多种联系,从而培养学生多向变通的思维能力。
数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。
通过变式训练,是要防止形式地、机械地背诵、套用公式和定理提高学生变通思考问题和灵活应用概念、公式以及定理的能力。
三、在解题教学中,利用变式来改变题目的条件或结论,揭示条件、目标间的联系,解题思路中的方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。
(一)多题一解,适当变式,.培养学生求同存异的思维能力。
许多数学习题看似不同,但它们的内在本质(或者说是解题的思路、方法是一样的),这就要求教师在教学中重视对这类题目的收集、比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。
(二)一题多解,触类旁通,培养学生发散思维能力,培养学生思维的灵活性。
一题多解的实质是以不同的论证方式,反映条件和结论的必然本质联系。在教学中教师应积极地引导学生从各种途径,用多种方法思考问题。这样,既可暴露学生解题的思维过程,增加教学透明度,又能使学生思路开阔,熟练掌握知识的内在联系。这方面的例子很多,尤其是几何证明题。通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。
(三)一题多变,总结规律,培养学生思维的探索性和深刻性。
通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。
伽利略曾说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例习题的教育功能。
譬如书本上有这样一道题,求证:顺次连接四边形各边中点所得的四边形是平行四边形。教师可以不失时机地进行变式,调动起学生的思维兴趣。变式(1)顺次连接矩形各边中点所得四边形是什么图形?变式(2)顺次连接菱形各边中点所得四边形是什么图形?变式(3)顺次连接正方形各边中点所得四边形是什么图形?做完这四个练习,教师还可以进一步引导学生概括影响组成图形形状的本质的东西是原来四边形的对角线所具有的特征。
又如应用题教学是初中教学中的一个难点,在教学中就可以把同类型的题目通过变式的方式展现给学生,把学生的思维逐步引向深刻。
例如在讲解一元一次方程的实践和探究这节课时,教师从奥运冠军孟关良训练为题材编了一题关于追及问题的应用题,一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?然后教师可对本例作以下变式。
变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒

『陆』 浅议高中数学教学中如何有效渗透变式教学

本人从事高中数学教学近十年,发现许多学生的数学思维单一,做习题的方法教条、缺乏灵活变通,而习题是训练学生数学思维的资源,是教师将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体,做好习题对学生思维能力的培养,解题能力的提高至关重要。要达到这一目的,倡导数学变式教学是一个行之有效的重要手段。如何进行课本习题的变式教学?下面谈谈自己的看法。
一、习题变式教学的原则
1、针对性原则
习题的教学惯穿于新授课、习题课和复习课,与新授课、习题课和复习课并存,一般情况下不单独成课。因此,对于不同的授课,对习题的变式也应不同。例如,新授课的习题变式应服务于本节课的教学目的;习题课的习题变式应以本章节内容为主,适当渗透一些数学思想和数学方法;复习课的习题变式不但要渗透数学思想和数学方法,还要进行纵向和横向的联系,同时变式习题要紧扣考纲。在习题变式教学时,要根据教学目标和学生的学习现状,切忌随意性和盲目性。
2、可行性原则
选择课本习题进行变式,不要“变”得过于简单,过于简单的变式题会让学生认为是简单的“重复劳动”,没有实际效果,而且会影响学生思维的质量;难度“变”大的变式习题易挫伤学生的学习积极性,使学生难以获得成功的喜悦,长此以往,将使学生丧失自信心,因此,在选择课本习题进行变式时要变得有“度”,恰到好处。
3、参与性原则
在习题变式教学中,教师要让学生主动参与,不要总是教师“变”,学生“练”。要鼓励学生大胆地“变”,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,可以帮助学生使所学的知识点融会贯通,同时培养了学生的创新意识和创新精神以及举一反三的能力。
二、习题变式教学的方法
下面以课本的一道习题为例,谈谈习题变式教学的方法。
原题:画出函数 的图象,并根据图象说出函数 的单调区间,以及在各单调区间上函数 是增函数是减函数。(高中《数学(人教版)》必修(1)习题1.3A组第1题)
1、将习题的条件特殊化
条件特殊化是指将原题中一般条件,改为具有特定性的条件,使题目具有特殊性。将课本习题条件特殊化,引导学生挖掘条件,考察特定概念。例如,将原题改为:
变式1:画出函数 的图象,并根据图象说出函数 的单调区间,以及在各单调区间上函数 是增函数是减函数。
这不仅考察了绝对值的概念,也考察了解一元二次方程,这符合由一般到特殊的认识规律,学生容易接受。
2、改变习题的背景
改变背景是指在某些条件不变的情况下,改变另一些条件的形式,使问题得到进一步深化。在教学过程中,变换习题的形式,可激发学生的探求欲望,从而提高学生的创新能力。例如,将原题改为:
变式2::画出函数 的图象,并根据图象说出函数 的单调区间,以及在各单调区间上函数 是增函数是减函数。
这样变式不仅考察了函数的图象,而且考察了偶函数的定义和性质;
变式3:求函数 在区间[-3,5]上的最值。
变式4、求函数 单调区间。
这样的变式练习,学生可以画图得出,也可以通过数学方法得出,通过这样的练习一定能提高学生学习数学的兴趣,且能巩固基础知识,熟练常规解题,从而达到教学目的。
三、习题变式教学应注意的问题
1、源于课本,高于课本
在高中数学习题变式教学中,所选用的“源题”应以课本的习题为主,课本习题均是经过专家学者多次筛选后的题目的精品,我们没有理由放弃它。在教学中我们要精心设计和挖掘课本的习题,编制一题多变、一题多解、一题多用和多题一解以提高学生灵活运用知识的能力。
2、循序渐进,有的放矢
在高中数学习题变式教学中,对习题的变式要循序渐进,有的放矢。例如,在高三复习时让学生做完习题“一动圆M与圆 : 外切,与圆: 内切,求动圆圆心M的轨迹方程。”且点评后,可将此题目变为:
变式1、已知圆 : 与圆 : ,若动圆M同时与圆 和圆 相外切,则动圆圆心M的轨迹是什么。
变式2、已知圆 : 与圆 : , 若动圆M同时与圆 和圆 相内切,则动圆圆心M的轨迹是什么。
变式3、已知圆 : 与圆 : , 若动圆M与圆 和圆 一个内切,一个外切,则动圆圆心M的轨迹又是什么。
变式1是对习题的模仿,目的是让学生熟悉利用定义法求轨迹的过程;变式3的目的是让学生进一步熟悉利用定义法求轨迹的方法,并要进行分步讨论;三个变式的目的都是让学生掌握利用圆锥曲线的定义求轨迹的方法。将常规题变为探索题,是设计变式题的又一途径。由常规题变出来的探索题,对学生来说更具创造性和挑战性。
3、纵向联系,温故知新
在高中数学习题变式教学中,对习题的变式要注意纵向联系,要紧密联系以前所学知识,让学生在学习新知识的同时对旧知识也得到复习、巩固和提高,从而提高学习效率,让学生明白“任何事物都是相互联系的”这一哲学道理。
例如,在学习《抛物线及其标准方程》(高中数学第二册(上))后,可将课本P118中的例3“斜率为1的直线经过抛物线 的焦点,与抛物线相交于两点A、B,求线段AB的长”可变为:
变式1:经过抛物线的焦点的弦与抛物线相交于两点A、B,以线段AB为直径的圆与抛物线的准线的关系是( )(A)相交;(B)相切;(C)相离;(D)没办法确定
变式2:求证:经过抛物线 的焦点的弦与抛物线相交于两点A、B,以线段AB为直径的圆与抛物线的准线相切。
变式3:经过抛物线 的焦点的弦与抛物线相交于两点A、B,以线段AB为直径的圆与抛物线的准线有何关系?
通过上述变式题的练习,既巩固了抛物线的定义,又复习了圆与直线的知识,也复习了梯形的中位线定理等等,从而达到了变式练习的目的。
总之,在高中数学教学中,搞好习题教学,特别是搞好课本习题的变式教学,不仅能加深学生对基础知识的理解和掌握,更重要的是在开发学生的智力、发展学生的思维,培养和提高学生的能力等方面,能发挥其独特的功效。变式教学可以让我们的学生在无穷的变化中领略数学的魅力,在曼妙的演变中体会数学的快乐。

『柒』 你认为初中数学变式的本质是什么在变式教学中体现了哪些数学思想

素质教育是以培养具有创造性思维和创造能力的人才为目标而进行的创新教育为归宿的教育。在课堂教学中落实素质教育,就要贯穿“学生为主体,训练为主线,能力为主攻”的原则。现代数学课程标准指出:数学教学不仅仅要使学生获得数学基础知识,基本技能,更要获得数学思想和观念,形成良好的数学思维品质,要通过各种途径,让学生体会数学思考和创造的过程,增强学习的兴趣和自信心,不断提高自主学习的能力。所以加强在教学中注重变式训练,可以促使学生的思维向多层次、多方向发散,帮助学生在问题的解答过程中去寻找解类似问题的思路、方法,有意识地展现教学过程中教师与学生数学思维活动的过程,充分调动学生学习的积极性、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。
所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。
变式其实就是创新。当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。通过多问、多思、多用等激发学生思维的积极性和深刻性。下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、在形成数学概念的过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。
从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。
通过对式子的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。
二、在理解定理和公式的过程中,利用变式使学生深刻认知定理和公式中概念间的多种联系,从而培养学生多向变通的思维能力。
数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。
通过变式训练,是要防止形式地、机械地背诵、套用公式和定理提高学生变通思考问题和灵活应用概念、公式以及定理的能力。
三、在解题教学中,利用变式来改变题目的条件或结论,揭示条件、目标间的联系,解题思路中的方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。
(一)多题一解,适当变式,.培养学生求同存异的思维能力。
许多数学习题看似不同,但它们的内在本质(或者说是解题的思路、方法是一样的),这就要求教师在教学中重视对这类题目的收集、比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。
(二)一题多解,触类旁通,培养学生发散思维能力,培养学生思维的灵活性。
一题多解的实质是以不同的论证方式,反映条件和结论的必然本质联系。在教学中教师应积极地引导学生从各种途径,用多种方法思考问题。这样,既可暴露学生解题的思维过程,增加教学透明度,又能使学生思路开阔,熟练掌握知识的内在联系。这方面的例子很多,尤其是几何证明题。通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。
(三)一题多变,总结规律,培养学生思维的探索性和深刻性。
通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。
伽利略曾说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例习题的教育功能。
譬如书本上有这样一道题,求证:顺次连接四边形各边中点所得的四边形是平行四边形。教师可以不失时机地进行变式,调动起学生的思维兴趣。变式(1)顺次连接矩形各边中点所得四边形是什么图形?变式(2)顺次连接菱形各边中点所得四边形是什么图形?变式(3)顺次连接正方形各边中点所得四边形是什么图形?做完这四个练习,教师还可以进一步引导学生概括影响组成图形形状的本质的东西是原来四边形的对角线所具有的特征。
又如应用题教学是初中教学中的一个难点,在教学中就可以把同类型的题目通过变式的方式展现给学生,把学生的思维逐步引向深刻。
例如在讲解一元一次方程的实践和探究这节课时,教师从奥运冠军孟关良训练为题材编了一题关于追及问题的应用题,一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?然后教师可对本例作以下变式。
变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?(从先行20米改为先行了20秒)
变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题
现有甲、乙两人比赛跑步,甲的速度是10米/秒,乙的速度是8米/秒,他们两人同地出发
(1)两人同时相向而行经过几秒两人相遇。
(2)两人同时同向而行经过几秒两第一次相遇。
(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。
这题该为平时学生熟悉的操场环形跑道,这里三题也是一组变式题,(1)、(2)是同时同地出发的相遇和追及问题,(3)是不同时出发相遇和追及问题,这题还蕴涵着分类讨论的思想。
变式3:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对?如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇?
这样的变式覆盖了同时出发相遇问题、不同时出发相遇问题、同时出发和不同时出发的追及问题等行程问题的基本类型。这样通过一个题的练习既解决了一类问题,又归纳出各量之间最本质的东西,今后碰到类似问题学生思维指向必定准确,很好培养了学生思维的深刻性。学生也不必陷于题海而不能自拔。
(三)一题多问,通过变式引申发展,扩充、发展原有功能,培养学生的创新意识和探究、概括能力。
牛顿说过:“没有大胆的猜想就做不出伟大的发现。”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。
教学中要特别重视对课本例题和习题的“改装”或引申。数学的思想方法都隐藏在课本例题或习题中,我们在教学中要善于对这类习题进行必要的挖掘,即通过一个典型的例题,最大可能的覆盖知识点,把分散的知识点串成一条线,往往会起到意想不到的效果,有利于知识的建构。
总之,在数学课堂教学中,遵循学生认知发展规律,根据教学内容和目标加强变式训练,对巩固基础、培养思维、提高能力有着重要的作用。特别是,变式训练能培养培养学生敢于思考,敢于联想,敢于怀疑的品质,培养学生自主探究能力与创新精神。当然,课堂教学中的变式题最好以教材为源,以学生为本,体现出“源于课本,高于课本”,并能在日常教学中渗透到学生的学习中去。让学生也学会“变题”,使学生自己去探索、分析、综合,以提高学生的数学素质。

『捌』 怎么样在中学数学教学中进行变式训练

所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。
变式其实就是创新。当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。通过多问、多思、多用等激发学生思维的积极性和深刻性。下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。

一、在形成数学概念的过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。

从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。

通过对式子的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。

二、在理解定理和公式的过程中,利用变式使学生深刻认知定理和公式中概念间的多种联系,从而培养学生多向变通的思维能力。

数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。

通过变式训练,是要防止形式地、机械地背诵、套用公式和定理提高学生变通思考问题和灵活应用概念、公式以及定理的能力。

三、在解题教学中,利用变式来改变题目的条件或结论,揭示条件、目标间的联系,解题思路中的方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。

(一)多题一解,适当变式,.培养学生求同存异的思维能力。

许多数学习题看似不同,但它们的内在本质(或者说是解题的思路、方法是一样的),这就要求教师在教学中重视对这类题目的收集、比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。

(二)一题多解,触类旁通,培养学生发散思维能力,培养学生思维的灵活性。

一题多解的实质是以不同的论证方式,反映条件和结论的必然本质联系。在教学中教师应积极地引导学生从各种途径,用多种方法思考问题。这样,既可暴露学生解题的思维过程,增加教学透明度,又能使学生思路开阔,熟练掌握知识的内在联系。这方面的例子很多,尤其是几何证明题。通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。

(三)一题多变,总结规律,培养学生思维的探索性和深刻性。

通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。

伽利略曾说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例习题的教育功能。

譬如书本上有这样一道题,求证:顺次连接四边形各边中点所得的四边形是平行四边形。教师可以不失时机地进行变式,调动起学生的思维兴趣。变式(1)顺次连接矩形各边中点所得四边形是什么图形?变式(2)顺次连接菱形各边中点所得四边形是什么图形?变式(3)顺次连接正方形各边中点所得四边形是什么图形?做完这四个练习,教师还可以进一步引导学生概括影响组成图形形状的本质的东西是原来四边形的对角线所具有的特征。

又如应用题教学是初中教学中的一个难点,在教学中就可以把同类型的题目通过变式的方式展现给学生,把学生的思维逐步引向深刻。

例如在讲解一元一次方程的实践和探究这节课时,教师从奥运冠军孟关良训练为题材编了一题关于追及问题的应用题,一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?然后教师可对本例作以下变式。

变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?(从先行20米改为先行了20秒)

变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题

现有甲、乙两人比赛跑步,甲的速度是10米/秒,乙的速度是8米/秒,他们两人同地出发

(1)两人同时相向而行经过几秒两人相遇。

(2)两人同时同向而行经过几秒两第一次相遇。

(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。

这题该为平时学生熟悉的操场环形跑道,这里三题也是一组变式题,(1)、(2)是同时同地出发的相遇和追及问题,(3)是不同时出发相遇和追及问题,这题还蕴涵着分类讨论的思想。

变式3:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对?如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇?

这样的变式覆盖了同时出发相遇问题、不同时出发相遇问题、同时出发和不同时出发的追及问题等行程问题的基本类型。这样通过一个题的练习既解决了一类问题,又归纳出各量之间最本质的东西,今后碰到类似问题学生思维指向必定准确,很好培养了学生思维的深刻性。学生也不必陷于题海而不能自拔。

(三)一题多问,通过变式引申发展,扩充、发展原有功能,培养学生的创新意识和探究、概括能力。

牛顿说过:“没有大胆的猜想就做不出伟大的发现。”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。

教学中要特别重视对课本例题和习题的“改装”或引申。数学的思想方法都隐藏在课本例题或习题中,我们在教学中要善于对这类习题进行必要的挖掘,即通过一个典型的例题,最大可能的覆盖知识点,把分散的知识点串成一条线,往往会起到意想不到的效果,有利于知识的建构。

总之,在数学课堂教学中,遵循学生认知发展规律,根据教学内容和目标加强变式训练,对巩固基础、培养思维、提高能力有着重要的作用。特别是,变式训练能培养培养学生敢于思考,敢于联想,敢于怀疑的品质,培养学生自主探究能力与创新精神。当然,课堂教学中的变式题最好以教材为源,以学生为本,体现出“源于课本,高于课本”,并能在日常教学中渗透到学生的学习中去。让学生也学会“变题”,使学生自己去探索、分析、综合,以提高学生的数学素质。

『玖』 今年高考数学是尹德好出的吗

是不是高中数学题根?
题根是什么?
题根不是概念,不是结论,而是一个问题。问题规范化后其实就是一个题目,就像讲课时的例题,课本上的习题,考卷上的考题。但它又不是一个孤立的题目,也不是一堆题中单一的个体。它是一个题族的根祖,一个题系中的根基,一个题群中的代表。抓到了一个题根,就等于抓到了这个题族,这个题群,这个题系。
《高中数学题根》一书就是在我们俩对题根及其变式教学理论数十年研究基础上而形成的。全书以高中数学知识体系为线索,以重要的知识点作章节,分为12章,共46节,每节两个题根,共92个。通过学习和体会,读者可以清楚地掌握基本知识和方法,领悟数学问题的本质,从而有助于脱离“茫茫题海”。
每个题根下的栏目设置为:
【题根分析】 找出题根中的信息元,寻找变式发散点,并在对题根详细分析过程中,总结核心知识点和经典解题方法。
【变式网络】 呈现各种变式的方向和层次。如对题根中元素的变更,条件的强化与弱化,方法的类比和归纳等等。
在线试读部分章节

著名数学教育家张奠宙教授作序
华东师范大学的教辅读物分社倪明社长交给我一叠书稿, 书名是《高中数学题根》。“题根”的提法,很吸引人。?者之一是过去熟悉的朋友—黄坪, 一位不甘寂寞、富有创见的数学老师。于是, 认真地看了一阵,觉得这是一本具有中国数学教育特色的教辅书。
教辅书常常被认为是应试教育的产物,因而广受诟病。 事实上, 教辅书历史悠久,意义非凡。 中国古代上许多儒学名家为四书五经作注,进行疏解, 其实就是为后学做教学辅导。 记得1970年代末, 上海的一套《数学自学辅导丛书》曾经洛阳纸贵,供不应求, 帮助过许多知识青年跨入大学门槛。现如今,许多重要文件时兴编写“导读”书籍, 其功能也就是“教辅”。 因此,在我看来, 优秀的教辅书功德无量, 而粗制滥造的则害人不浅。 高质量的、有中国特色的优秀的教辅书,同样可以为教学改革护航。
晚近的教学改革, 多半注重认识过程的前半段:创设情境、提出问题、分组探究、汇报归纳, 以至有所发现。这是从感性到理性的认识过程。但是, 众所周知,认识过程还有理性认识的不断加深、并用于实践的后半段过程。这表现为练习巩固、反思总结、欣赏体察、变式应用、以至提炼成数学思想方法。做好这后半段的教学工作, 需要扎实的数学功夫才能应对, 而不是花里胡哨的表演所能奏效的。我想,一本优秀的教辅书,可以在?后半段认识过程中发挥重要作用。
黄坪、尹德好两位老师的《高中数学题根》,为以上所说的“后半段认识过程“提供了一个展示的。其基本思路是,寻找题根,通过变式织成题网。所谓“纲举目张” , 题根就是这张网的“纲”。
国内外的许多数学教育研究家认为, 中国数学教育的重要特色之一在于数学问题的“变式”处理。顾泠沅教授是数学变式教学的倡导者。近年来,香港大学和香港中文大学就有好几篇博士论文研究数学变式的作用。这本《高中数学题根》,则进一步总结了第一线的教学实践的经验,以“变式”为主导思想,系统地展开复习课教学。书里的每一支“题根”, 都会有好几种变式形成“变式网络”,或变“背景”, 或变“对象”, 或变“规则”, 或变“条件”……, 变式之丰富前所未见,其中具有许多创新的成分。至于“题根分析”、“经典变式”、“变式训练”等栏目, 则是为学习者提高解题能力进行了必要的指导和铺垫, 充分发挥其“教辅”功能。可以设想,如果积以时日,寻求“题根”与变式, 也许会成为中国数学教育的一抹亮色。
写了以上的一些感想,权作为序,也借此希望大家都来珍视中国数学教育的点滴创造,不要老是捧着金饭碗去讨饭。
目录


前言
第一章集合与命题
第1节集合的概念及运算
第2节命题与充要条件
第二章基本初等函数
第1节函数与反函数的概念、定义域及值域
第2节函数的单调性、奇偶性和周期性
第3节一次函数、二次函数
第4节幂函数、指数函数及对数函数
第5节函数图象的平移和翻折
第6节函数、方程与不等式
第7节导数在函数中的应用
第三章三角函数
第1节同角三角比的关系
作者简介
黄 坪 上海市曹杨第二中学特级教师。在他荣誉清单里有:教育园丁、科技拔尖人才、五一劳动奖章、有突出贡献的中青年专家等,这是对他教育奉献的高度概括。在他的工作经历中有:教研组长、年级主任、教科室主任、教导处主任、数学教研员、高级教师评审组组长等,这是对他教学能力的最佳注释。他注重科研,是“中学数学思维教学”、“高中数学变式教学”课题的领衔人,有五十多篇学术论文发表。教学,对他来说,是轻车熟路,数学问题?模式及其变式在他手里玩转得十分自如。这本《高中数学题根》正是来自教学一线的、注重教学实际研究的极好总结。
尹德好 上海市育才中学高级教师,中国数学奥林匹克高级教练员。人如其名,行如其校。“上海市园丁奖”获得者、静安区高中数学学科带头人。让学生“享受数学、提升智慧”是他一贯的追求,其教学成绩显著,深受学生的喜爱。他教学与科研并举,已主持和参加国家、市、区级科研课题十多项,并在专业杂志上发表数十篇论文,参与著书5本。同时,他还参与了多项重要考试的命题工作。近年来,他致力于数学试题创作与研究,?学题的变式和变式教学是其研究的重点,从《高中数学题根》的篇章中可以一睹他的智慧与风采。

阅读全文

与数学变式教学相关的资料

热点内容
北京高中作文耐心 浏览:59
变作文600字初中 浏览:660
2011台州中考语文 浏览:250
识字一的教案 浏览:85
语文作业本凡卡答案 浏览:619
300书信作文大全 浏览:227
苏教版五年级语文下册补充成语ppt 浏览:891
爱的方式作文开头结尾 浏览:694
端午节的作文600字初中 浏览:70
3年级上册语文作业本答案 浏览:265
高考语文与小学的联系 浏览:965
2015北京语文中考答案 浏览:979
双分点地步法教学 浏览:714
小学二年级作文辅导课 浏览:693
关于成功条件的作文素材 浏览:848
建军节作文的结尾 浏览:88
五年级下册语文mp3在线收听 浏览:696
ie教案6 浏览:907
三年级语文培优补差计划 浏览:679
二胡独奏一枝花教学 浏览:525