㈠ 谁有学习高中物理的方法 教下@@
物理——哲学
高级的物理方法本质多是哲学理论
比如力学(整体隔离法,功能关系,守恒,相似全等,力学三角和几何相似,拔河模型,子弹模型,摩擦角,竖直上抛模型,类平抛………………)
电磁(趋同原理,突变临界原理,低能原理……)
万有引力(常用数字技巧,常用公式技巧,
恒定电路(等效替代,总体功能关系,做工)
光这个没办法,看你平面数学好不好了
总之多积累吧,常思考
别人告苏你的一个是不熟练,用不好,而且不深刻
太多了,我高三刚开始,总复习晚了,总结完了在说吧,我也早想出一个总结了
做题认真的态度(受力分析等),高级的工具(思维),强大的计算(字母运算,数字技巧)
㈡ 物理教学论怎样突破重难点 简单题
中学阶段,学生的抽象思维和逻辑思维能力在不断形成发展,抽象的概念和规律不易理解和接受,而物理概念和规律的推导和理解是物理教学的一个重、难点,如果我们在教学过程中能够用生动有趣的事例去启发去诱导,用准确有趣的实验去演示,用科学的方法去分析和突破这些重、难点,他们就能够用物理知识来解释身边的物理现象,解决有关的实际问题,这样就大大地提高了学生学习物理知识的积极性和主动性,使他们对物理产生浓厚的兴趣.在物理教学中,如何突破知识的重点和难点,帮助学生找到知识的窍门和解决问题的突破口,“授之以渔”,是物理教学中的重要课题.本人在教学实践中,觉得用下面的方法去突破,效果不错.
一、避轻就重巧抓重点去突破
重点知识与其它知识有着密不可分的关系,很多知识点往往由重点知识派生而来,教学中应集中主要精力,去讲深进透重点知识,非重点知识便迎刃而解了,若不深入挖掘重点,胡子眉毛一把抓,最终只会导致“剪不断,理还乱”的结果.当然,忽视非重点也是有失偏颇的,教学中应将重点、非重点知识结合起来,在突出重点的同时,使学生对所学知识形成一个完整的网络,使思维得到强化的训练,能力得到应有的提高.
例如,在讲授牛顿运动定律时,只有使学生理顺第一章“力”的概念,理解力的合成与分解,把第二章“直线运动”规律弄清楚,为传授第三章牛顿运动定律打下扎实的基础,就有利于突破牛顿运动定律这一教学的重难点.又如,电磁学单元中,理解了电场,才能较好地学习重点知识恒定电流,掌握好恒定电流,再学习电磁感应和交流电就顺理成章了.处理好重点与非重点知识,还应引导学生深入挖掘两者之间的内在联系,如力学部分中加速度这一物理量是联系运动学和力学的纽带;电磁学中电流强度这一物理量是电磁学部分中的生命线,掌握这点就能很好地使知识系统化、网络化.
同时,还要正确处理好重点与难点的关系,有些知识既是重点又是难点,有些知识虽是难点但不是重点,即重、难点不集中一块,前一种情况只要抓住了重点,难点就自然突破,后一种情况要设法实破难点,但又不能与重点等量齐观.
二、精讲善导启发智能去突破
启发教学是启发学生智能的教学,孔子说:“不愤不启”,“不悱不发”.叶圣陶提出的“教是为了达到不需要教”的教育思想,都明确了教学这一认识活动是主观见诸于客观的过程,是学生这一教学的主体在教师的主导下,去接受教育的过程,事实说明,只有把教学中的主体思维启发起来,他们才能够主动地吸收新的知识,接受新的思想,教学过程中,强化对重点知识的启发,有利于启发学生的思维,提高实践能力,例如力学单元的教学,介绍一些获得诺贝尔奖的物现学家的思维方法,要求学生自己动手做好学生实验,处理数据,启发他归纳出结论,鼓励学生自制教具,做好小实验,进行小发明,小创造,激励他们刻苦钻研主动探索,不断探究.
三、综合分析总结方法去突破
在进行知识系统化和整体化的教学中,教会学生分析,归纳问题,对他们进行解题方法指导,强化系列训练,是巩固、理解物理概念提高实践创新能力的关键环节.有不少学生沉迷于题海之中,遇到困难头皮发麻,束手无策,究其原因,除了概念不清、规律不明、能力薄弱之外,还有一个主要的原因就是“只埋头拉车,不抬头看路,”走马观花,囫囵吞枣,不抓住本质去透彻理解,不善于归纳总结解题的经验方法.例如在复习摩擦力时,先提出问题,摩擦力的大小与方向如何确定?让学生进行讨论分析,相当部分的同学都能总结出:按定义、运用牛顿第二定律、第三定律和物理的平衡条件这四个知识点去解决,方法比较灵活而全面.有关中学物理中求极值的方法,有不少同学能总结归纳出如下方法:①、若两个物理量之和或积为定值,可采用不等式法:x1+x2≥2■;②、若出现asin?夼+bcos?夼或sin?夼+cos?夼的形式,可采用三角函数求极值法:asin?夼+bcos?夼=■sin(?夼+φ);③、若遇到子弹打木块、求弹簧的最大压缩量或最大伸长量等问题时,可相应采用图示法、函数法或极限法等方法去解决.事实证明,学生不断积累归纳总结解题方法,有利于突破重点和难点.
四、和谐统一,遵循规律去突破
“和谐即等于最高自然规律的绝对要求.”物理规律以它的和谐统一而产生美感,例如,力学中的万有引力定律与电学中的库仑定律达到了形式上的和谐统一,光学中的波粒二象性与电学中的波粒二象性和谐统一为物质波,光电磁热的辐射由麦克斯韦的电磁物理论和谐地统一起来,将这些和谐的物理现象与规律应用于教学中,对于突破重点和难点起到事半倍功的效果.例如“竖直上抛运动”,新教材为了降低难点,将整个过程分解为上升和下降两个过程进行讲授,而在学生掌握了同一直线上矢量的运算及运动的合成与分解知识的基础上,用匀变速直线运动的知识将竖直上抛运动的上升和下降过程和谐地统一起来,使学生透彻理解匀变速直线运动的公式,突破了竖直上抛运动这一难点.又如,电势能抽象而难以理解,若将它与重力势能和谐地统一起来,采用类比的方法就可化难为易了;还有分子势能与弹性势能也可用同样的方法统一理解.总之,在物理教学的过程中,我们只要充分利用物理的和谐与统一,就可使学生在系统掌握知识的同时,举一反三,自然而然地突破重点与难点.
㈢ 怎样产生交变电流教学设计 doc
教材分析
1、交流与直流有许多相似之处,也有许多不同之处.学习中我们特别要注意的是交流与直流的不同之处,即交流电的特殊之处.这既是学习、了解交流电的关键,也是学习、研究新知识的重要方法.在与已知的知识做对比中学习和掌握新知识特点的方法,是物理课学习中很有效和很常用的方法.
在学习交变电流之前,应帮助学生理解直流电和交流电的区别.其区别的关键是电流方向是否随时间变化.同时给出了恒定电流的定义——大小和方向均不随时间变化.
2、对于交变电流的产生,课本采取由感性到理性,由定性到定量,逐步深入的讲述方法.为了有利于学生理解和掌握,教学中要尽可能用示波器或模型配合讲解.教学中应注意让学生观察教材中的线圈通过4个特殊位置时电表指针的变化情况,分析电动势和电流方向的变化,使学生对线圈转动一周中电动势和电流的变化有比较清楚的了解.有条件的,还可以要求学生运用已学过的知识,自己进行分析和判断.
3、用图像表示交变电流的变化规律,是一种重要方法,它形象、直观、学生易于接受.要注意在学生已有的图像知识的基础上,较好地掌握这种表述方法.更要让学生知道,交变电流有许多种,正弦电流只是其中简单的一种.课本中用图示的方法介绍了常见的几种,以开阔学生思路,但不要求引伸.
4、在这一节中学生要第一次接受许多新名词,如交变电流、正弦电流、中性面、瞬时回值、最大值(以及下一节的有效值)等等.要让学生明白这些名词的准确含义.特别是对中性面的理解,要让学生明确,中性面是指与磁场方向垂直的平面.当线圈位于中性面时,线圈中感应电动势为零,线圈转动过程中通过中性面时,其中感应电动势方向要改变.
5、课本上介绍的交变电流的产生,实际上是正弦交流电的产生.以矩形线框在匀强磁场中匀速转动为模型,以线框通过中性面为计时起点,得到电动势随时间满足正弦变化的交变电流.这里可以明确指出,电动势的最大值由线框的匝数、线框面积、转动角速度和磁感应强度共同决定.
6、课本将线框的位置与产生的电动势的对应起来,意图是帮助学生建立起鲜明的形象,把物理过程和描述它的物理规律对应起来.教师可以通过一些问题的提问,帮助学生理解有关内容,例如,如果在线框转到线框平面与磁感线平行时开始计时,它产生的电动势随时间变化的图像应是什么样的?
7、交流电的有效值、周期等概念的学习重在理解.
交流电的有效值概念是本章的重点,也是难点.课本中的交流电有效值定义特别强调是从使电阻产生热量等效这一方面来定义交流电的有效值的.教材中直接给出了正弦交流电流的有效值与最大值的关系式,但不要求证明,为了让学生更好地理解和熟悉有效值,课本上已经指出,交流电压表和电流表的示数都是有效值,家用电器上的标称也是有效值.
交流电的周期描述交流电的变化快慢.在一个周期时间内,交流电完成一次完全变化.在实际生活中,经常能见到的是交流电的频率.我国民用交流电的频率是50HZ.在一些欧美国家,交流电的频率是60HZ.
8、交流电的最大值、有效值、周期和频率都是描述交流电某一方面的特性,而交流电的图像却可以全面反映某一交流电的情况.所以,要求学生能够从交流电的图像中得到描述交流电的各个物理量.
【教学设计思想】交变电流是生产和生活中最常用到的电流,而正弦式电流又是最简单和最基本的。正弦式电流产生的原理是基于电磁感应的基本规律,所以本章是前一章的延续和发展,是电磁感应现象的具体应用。另一方面,本节知识是全章的理论基础,有着承上启下的作用。本节内容的教学重点是运用电磁感应的基本知识,配合响应的演示实验,分析交变电流的产生过程,认识交变电流的特点及其规律。培养学生联系实际,勇于创新的科学精神和自主学习的能力,培养善于观察,勤于思考,科学推理、联系实际、勇于创新的精神。
教学目标
(一)知识与技能
1.使学生理解交变电流的产生原理,知道什么是中性面。
2.掌握交变电流的变化规律及表示方法。
3.理解交变电流的瞬时值和最大值及中性面的准确含义。
(二)过程与方法
1.掌握描述物理量的三种基本方法(文字法、公式法、图象法)。
2.培养学生观察能力,空间想象能力以及将立体图转化为平面图形的能力。
3.培养学生运用数学知识解决物理问题的能力。
(三)情感、态度与价值观
通过实验观察,激发学习兴趣,培养良好的学习习惯,体会运用数学知识解决物理问题的重要性
教学重点、难点
重点
交变电流产生的物理过程的分析。
难点
交变电流的变化规律及应用。
教学方法
演示法、分析法、归纳法。
教学手段
电池组、学生电源、电压传感器、手摇发电机、灵敏电流计、多媒体教学课件
教学过程
(一)引入新课
由校园的夜景照片引入,用传感器显示直流、交流的电压时间图象,有学生概括其相应特点,老师给出具体的定义,学生找关键词,练习,概念应用。那生活中使用广泛的交流电是怎样产生的呢?出示手摇发电机,观察现象,现象说明了什么?学生设计方案,验证是否为交流电。
一、交变电流
1、定义:
2、产生: 原理
发电机结构
中性面 磁通量最大
e=0 i=0
电流方向变
二、正弦式交变电流
1、定义:
2、变化规律: e=Emsinωt
i=Imsinωt
u=U msinωt
三、几种常见的交变电波形
(二)课堂练习
1. 交流发电机工作时的电动势的变化规律为e=EmSinωt,如果转子的转速n提高一倍,其它条件不变,则电动 势的变化规律将变化为:
A. e=EmSin2ωt B. e=2EmSin2ωt
C. e=2EmSin4ωt D. e=2EmSinωt
2.一台发电机产生的按正弦规律变化的感应电动势的最大值为311V,若线圈
在磁场中匀速转动的角速度是100πrad/s。
(1)写出感应电动势的瞬时值表达式。
(2)若该发电机只与含电阻的负载组成闭合电路,电路的总电阻为100Ω,
试写出通过负载的电流强度的瞬时表达式、在t=1/120s时电流强度的瞬时值
为多少?
(3)线圈从中性面转过1800的过程中,电动势的最大值、平均值分别是多少?
(4)转动过程中磁通量的变化率最大值是多少?
答案(1)e=311Sin100πt(V)
(2)I=3.11Sin(100π×1/120)=3.11×1/2=1.55(A)
(3)E m=311V E=NΔφ/Δt=2NBSω/π≈198V
(4)Δφ/Δt=311/N(Wb/s)
(三)、学生自己整理概括,本节课本节课所学内容,并质疑,老师解答。
(四)综合应用、实例探究
老师质疑:以传感器得到手摇发电机的电压时间图象,处理放大,发现是锯齿波,而非正弦波,问,为什么/学生讨论、猜测,并证实。
板书:
一、交变电流
1、定义:
2、产生: 原理
发电机结构
中性面 磁通量最大
e=0 i=0
电流方向变
二、正弦式交变电流
1、定义:
2、变化规律: e=Emsinωt
i=Imsinωt
u=U msinωt
教学反思
1、应帮助学生理解直流电和交流电的区别.其区别的关键是电流方向是否随时间变化.同时给出了恒定电流的定义——大小和方向均不随时间变化。
2、有条件可以多取几组器材,让学生亲自动手并观察线圈通过4个特殊位置时电表指针的变化情况,分析电动势和电流方向的变化,使学生对线圈转动一周中电动势和电流的变化有比较清楚的了解。
3、引导学生掌握用图象表示交变电流的变化规律这一重要方法。更要让学生知道,交变电流有许多种,正弦电流只是其中简单的一种。课本中用图示的方法介绍了常见的几种,以开阔学生思路,但不要求引伸。
4、引导学生将线框的位置与产生的电动势的对应起来,帮助学生建立起鲜明的形象,把物理过程和描述它的物理规律对应起
㈣ 电子线路教案下载
是老师的话就自己写吧!给你一点参考,图和表格没法复制。自己讲课一定要自己写哦!不要误己误人!
第一章直流电路
在生产自动化控制系统中,时常可能会出现一些由于电气控制设备故障引起的失控问题,以致影响正常的生产秩序,如何对这些电气控制设备故障进行维修?首先要了解电路的控制原理,然后对有关的电路参数进行检测,将检测的参数与标准参数比较,从而判断故障所处的位置并排除,整个过程就这么简单。这就是维修技术。所谓检测电路参数,就是测量电路中某段电路两端的电压和流过它的电流,以及其阻抗。在实际工作中,如何掌握检测维修技能,是我们学习本课程的目的。
本章学习目标
(1)了解电路的基本物理量的意义、单位和符号,电流与电压正方向的确定方法;
(2)了解电路的基本定律的意义及其应用、电路的工作状态以及负载额定值的意义;
(3)了解电源的等效变换的条件,掌握电路的等效变换方法。
(4)掌握电路的分析的基本原理及电路参数的检测方法。
1.1 电路的基本概念
1.1.1 电路与电路基本物理量
1.电路图
(1)电路
电路就是电流所流过的路径,它为了实现某种功能由一些电气设备或元构成的。,就其功能而言,可以分为两大类:一是实现能量的转换、传送与分配(如电力系统电路等);二是实现信号的传送和处理(如广播电视系统),
(2)电路模型
由于电能的传输和转换,或是信号的传递和处理,都是通过电流、电压和电动势来实现的,因此下面介绍电路的基本物理量。如图1-1所示
图1-1理想电路元件及其图形符号
2.电流及参考方向
电流是一种物理现象,是带电粒子有规则的定向运动形成的,通常将正电荷移动的方向规定为电流正方向。电流的大小用电流强度来衡量,其数值等于单位时间内通过导体某一横截面的电荷量。根据定义有
(1-1)
式中,i为电流,其单位为安培 (A);dq为通过导体截面的电荷量,电荷量的单位为库仑(C);dt为时间(s)。
上式表明,在一般情况下,电流是随时间变化的。如果电流不随时间而变化,即dq/dt=常数,则这种电流就称为恒定电流 (简称直流)。直流时,不随时间变化的物理量用大写字母表示,式 (1-1)可写成
(1-2)
电流的方向是客观存在的,但在电路分析中,一些较为复杂的电路,有时某段电流的实际方向难以判断,甚至有时电流的实际方向还在随时间不断改变,于是要在电路中标出电流的实际方向较为困难。为了解决这一问题,在电路分析时,常采用电流的“参考方向”这一概念。电流的参考方向可以任意选定,在电路图中用箭头表示。当然,所选的参考方向不一定就是电流的实际方向。当参考方向与电流的实际方向一致时,电流为正值(i>0);当参考方向与电流的实际方向相反时,电流为负值(i<0)。这样,在选定的参考方向下,根据电流的正负,就可以确定电流的实际方向。在分析电路时,先假定电流的参考方向,并以此去分析计算,最后用求得答案的正负值来确定电流的实际方向。
3.电压及参考方向
(1)定义:单位正电荷在电场力作用下,由a运动到b电场力所做的功,称为电路中a到b间的电压,即
(1-3)
式中,uab为a到b间的电压,电压的单位为伏特 (V); 为 的正电荷从a运到b所做的功,功的单位为焦耳 (J)。
在直流时,式 (1-3)可写成
(1-4)
(2)单位:1千伏特(KV)=1000伏(V)
1伏特(KV)=1000毫伏(mV)
1毫伏(mV)=1000微伏(μV)
(3)实际方向:高电位指向低电位
(4)参考方向:任意选定某一方向作为电压的正方向,也称参考方向。
(5)电压参考方向的表示方法
在电路分析时,也需选取电压的参考方向,当电压的参考方向与实际方向一致时,电压为正 (u>0);相反时,电压为负 (u<0)。电压的参考方向可用箭头表示,也可用正
(+)、负 (-)极性表示
4.电位
在电路中任选参考点0,该电路中某点。到参考点0的电压就称为a点的电位。电位的单位为伏特 (V),用V表示。电路参考点本身的电位V0=0,参考点也称为零电位点。根据定义,电位实际上就是电压,即
Va=Ua0 (1-5)
可见,电位也可为正值或负值,某点的电位高于参考点,则为正,反之则为负。任选参考点0,则a、b两点的电位分别为Va=Ua0、Vb=Ub0。按照做功的定义,电场力把单位正电荷从a点移到b点所做的功,等于把单位正电荷从a点移到0点,再移到b点所做的功的和,即
Uab=Ua0+U0b=Ua-Ub0=Va-Vb
或 Uab=Va-Vb (1-6)
式 (1-6)表明,电路中a、b两点间的电压等于a、b两点的电位差,因而电压也称为电位差。
注意!同一点的电位值是随着参考点的不同而变化的,而任意两点之间的电压却与参考点的选取无关。
举例:例1-1
总结:
电压、电流的参考方向是事先选定的一个方向,根据电压、电流数值的正、负,可确定电压、电流的实际方向。引入参考方向后,电压、电流可以用代数量表示。电路或元件的伏安关系是电路分析与研究的重点。
复习:
1、简述电流及电压参考方向的含义
2、电压与电位有何区别?
1.1.2 电路基本元件及其伏安特性
电路中的元件,如不另加说明,都是指理想元件。分析研究电路的一项基本内容就是分析电路或元件的电压、电流及其它们之间的关系。电压与电流的关系称为伏安关系或伏安特性,在直角平面上画出的曲线称为伏它特性曲线。下面讨论电路基本元件及其伏安特性。
1.电阻元件及其伏安特性
电阻元件的伏安特性,如图1-2所示,为过原点的
一条直线,它表示电压与电流成正比关系,这类
电阻元件称为线性电阻元件,其两端的电压与电流
服从欧姆定律关系,即
图1-2电阻元件的伏安特性曲线
或 (1-7)
在直流电路中,欧姆定律可表示为
或U=RI (1-8)
式中电压U的单位是V,电流I的单位是A,电阻R的单位是 。常用的电阻单位还有行千欧(k )和兆欧(M )他们之间的关系为
1M =103k =106
值得注意的是,导体的电阻不随其端电压的大小变化,是客观存在的。当温度一定时,导体的电阻与导体的长度l成正比,与导体的横截面积S成反比,还与导体的材料性质(电阻率 )有关,即
(1-9)
式中,R的单位是 , 的单位是 m,l的单位是m,S的单位是m2。若令G=1/R,则G称为电阻元件的电导,电导的单位是西[门子](S)。
在(1-8)式中,当电压与电流的参考方向一致时,电压为正值。反之,则电压为负值。
2.电压源
电源是电能的来源,也是电路的主要元件之一。电池、发电机等都是实际的电源。在电路分析时,常用等效电路来代替实际的部件。一个实际的电源的外特性,即电源端电压与输出电流之间的关系[U=f(I)],可以用两种不同的电路模型来表示。一种是电压源;一种是电流源。
(1)理想的电压源——恒压源
一个电源没有内阻,其端电压与负载电流的变化无关,为常数,则这个电源称为理想的电压源,用Us表示,它是一条与I轴平行的直线。通常用的稳压电源、发电机可视为理想的电压源。
(2)电压源
实际的电源都不会是理想的,总是有一定的
内阻,因此,在电路分析时,对电源可以用
一个理想的电压源与内阻相串联的电路模
型——电压源来表示,如图1-3所示。直流电
压源的外特性为
图1-3 电压源外特性曲线
U=Us-R0I (1-10)
图中斜线与纵座标轴的交点,为负载开路时,电源的端电压(电压源的最高端电压),即I=0,U=U0=Us。而与横座标轴的交点则是电源短路时的最大电流Is,即U=0,Is=Us/R0。
3.电流源
(1)理想电流源——恒流源
当一个电源的内阻为无穷大,其输出电流与负载的变化无关,为常数,则这个电源称为理想电流源,用Is表示。其外特性曲线是一条与纵轴U平行的直线。常用的光电池与一些电子器件构成的稳流器,可以认为是理想的电流源。
(2)电流源
理想电流源实际上是不存在。对于一个实际的电源,也可以用一个理想的电流源与内阻并联的电路模型——电流源来替代,如图1-4所示,由式(1-10)得直流电流源的外特性为
图1-4 电流源外特性曲线
(1-11)
的曲线,图中斜线与纵轴的交点表示负载开路时,I=0,U=U0=R0Is=Us;斜线与横轴的交点则是电流源短路时,U=0,I=Is。
4.电压源与电流源的等效变换
如果电压源和电流源的外特性相同,则在相同电阻R上产生相等的电压U与电流I。如图1-5所示。
在图1-5(a)的电压源模型中
图1-5 实际电压源与实际电流源等效变换
(1-12)
在图1-5(b)的电流源模型中
(1-13)
比较以上两式,得
或 (1-14)
式(1-14)就是实际的电压源与电流源之间等效变换公式。
在等效变换时还需注意:
1)电压源是电动势为E的理想电压源与内阻R0相串联,电流源是电流为Is的理想电流源与内阻R0相并联,是同一电源的两种不同电路模型。
2)变换时两种电路模型的极性必须一致,即电流源流出电流的一端与电压源的正极性端相对应。
3)等效变换仅对外电路适用,其电源内部是不等效的。
4)理想电压源的短路电流Is为无穷大,理想电流源的开路电压U0为无穷大,因而理想电压源和理想电流源不能进行这种等效变换。
5)扩展内阻R0的内涵,即当有电动势为E的理想电压源与某电阻R串联的有源支
路,都可以变换成电流为Is的理想电流源与电阻R并联的有源支路,反之亦然。其相互变换的关系是
式 (1-15)中电阻R可以是电源的内阻,也可以是与电压源串联或与电流源并联的任意电阻。
举例:例1-2
1.1.3 电路的三种状态
(1)额定工作状态
在图1-6所示的电路中,如果开关闭合,电源则向负载RL提供电流,负载RL处于额定工作状态,这时电路有如下特征:
① 电路中的电流为:
图1-6 电路的有载与空载
(1-15)
式中,当Us与R0一定时,I的值取决于RL的大小。
② 电源的端电压等于负载两端的电压(忽略线路上的压降),为:
U1= Us-R0I=U2 (1-16)
③ 电源输出的功率则等于负载所消耗的功率(不计线路上的损失),为:
P1=U1I=(Us-R0I)I=U2I=P2 (1-17)
(2)空载状态
图1-6所示的电路,为开关断开或连接导线折断时的开路状态,也称为空载状态。电路在空载时,外电路的电阻可视为无穷大。因此电路具有下列特征:
① 电路中的电流为零,即
I=0 (1-18)
② 电源的端电压为开路电压U0,并且有
U1=U0=Us-R0I=Us (1-19)
③ 电源对外电路不输出电流,因此有
P1=U1I=0,P2=U2I=0 (1-20)
(3)短路状态
如图1-6所示的电路中,电源的两输出端线,因绝缘损坏或操作不当,导致两端线相接触,电源被直接短路,这就叫短路状态。
当电源被短路时,外电路的电阻可视为零,这时电路具有如下特征:
① 电源中的电流最大,但对外电路的输出电流为零,即
,I=0 (1-21)
式中Is称为短路电流。因为一般电源的内阻R0很小,所以Is很大。
② 电源和负载的端电压均为零,即
U1= Us-R0I=0,U2=0 (1-22)
上式表明,电源的恒定电压,全部降落在内阻上,两者的大小相等,方向相反,因此无输出电压。
③ 电源输出的功率全部消耗在内阻上,因此,电源的输出功率和负载所消耗的功率均为零,即
(1-23)
举例:例1-3
总结:
1、简单电路的分析可以采用电阻串、并联等效变换的方法来化简。实际电压源与实际电流源可以互相等效变换。
2、无源二端线性网络可以等效为一个电阻。有源二端线性网络可以等效为一个电压源与电阻串联的电路或一个电流源与电阻并联的电路,且后两者之间可以互相等效变换。等效是电路分析与研究中很重要而又很实用的概念,等效是指对外电路伏安关系的等效。
复习:
1、电源在等效变换时需注意哪几点?
2、电路的三种状态各有什么特点?
1.2 直流电路的基本分析方法
电路分析是指在已知电路结构和元件参数的条件下,确定各部分电压与电流的之间的关系。实际电路的结构和功能多种多样,如果对某些复杂电路直接进行分析计算,步骤将很繁琐,计算量很大。因此,对于复杂电路的分析,必须根据电路的结构和特点去寻找分析和计算的简便方法。本节主要介绍电路的等效变换、支路电流法、结点电压法、叠加定理、戴维南定理、非线性电阻电路图解法等分析电路的基本方法。这些方法既可用于分析直流电路,也适用于分析线性交流电路。
1.2.1 电路的等效电阻
1.二端网络
二端网络是指具有两个输出端的电路,如果
电路中含有电源就叫有源二端网络,不含电源则
叫无源二端网络。二端网络的特性可用其端口上
的电压U和电流I之间的关系来反映,图1-7中
的端口电流I与端口电压U的参考方向 图1-7 二端网络
对二端网络来说是关联参考方向。
如果一个二端网络的端口电压与电流关系和另一个二端网络的端口电压与电流关系相同,则这两个二端网络对同一负载(或外电路)而言是等效的,即互为等效网络。
2.电阻的串联
如图1-8所示,为几个电阻依次连接,当中无分支电路的串联电路。串联电路的特点:
(1)流过各电阻中的电流相等,即
图1-8 电阻串联及其等效
I=I1=I2 (1-24)
(2)电路的总电压等于各电阻两端的电压之和,即
U=U1+U2 (1-25)
由此可得,电路取用的总功率等于各电阻取用的功率之和,即
IU=IU1+IU2 (1-26)
(3)电路的总电阻等于各电阻之和,即
R=R1+R2 (1-27)
(4)电路中每个电阻的端电压与电阻值成正比,即
(1-28)
(5)串联电阻电路消耗的总功率P等于各串联电阻消耗的功率之和,即
(1-29)
串联电路的实际应用主要有:
① 常用电阻的串联来增大阻值,以达到限流的目的;
② 常用几个电阻的串联构成分压器,以达到同一电源能供给不同电压的需要;
③ 在电工测量中,应用串联电阻来扩大电压表的量程。
3.电阻的并联
如图1-9所示,为几个电阻的首尾分别连接在电路中相同的两点之间的并联电路。
并联电路有如下特点:
(1)各并联电阻的端电压相等,且等于电路两端的电压,即
图1-9 电阻并联及其等效
U=U1=U2 (1-30)
(2)并联电路中的总电流等于各电阻中流过的电流之和,即
I=I1+I2 ` (1-31)
(3)并联电路的总电阻的倒数等于各并联电阻的倒数之和,即
即 (1-32)
(4)并联电路中,流过各电阻的电流与其电阻值成反比,阻值越大的电阻分到的电流越小,各支路的分流关系为
(1-33)
可见,在电路中,通过并联电阻能达到分流的目的。
(5)并联电阻电路消耗的总功率等于各电阻上消耗的功率之和,即
(1-34)
可见,各并联电阻消耗的功率与其电阻值成反比。
并联电路的实际应用有:
(1)工作电压相同的负载都是采用并联接法。对于供电线路中的负载,一般都是并联接法,负载并联时各负载自成一个支路,如果供电电压一定,各负载工作时相互不影响,某个支路电阻值的改变,只会使本支路和供电线路的电流变化,而不影响其他支路。例如工厂中的各种电动机、电炉、电烙铁与各种照明灯都是采用并联接法,人们可以根据不同的需要起动或停止各支路的负载。
(2)利用电阻的并联来降低电阻值,例如将两个1000 的电阻并联使用,其电阻值则为500 。
(3)在电工测量中,常用并联电阻的方法来扩大电流表量程。
4.电阻的混联
在实际的电路中,经常有电阻串联和并联相结合的连接方式,这就称为
电阻的混联。对于能用串、并联方法逐步化简的电路,仍称为简单电路。有些电阻电路既不是串联,也不是并联,无法用串、并联的公式等效化简,只有寻找其他的方法求解,如电阻的星形联接与三角形联接的求解。
举例:例1-4
1.2.2 基尔霍夫定律
用串并联的方法能够最终化为单一回路的简单电路,可以用欧姆定律来求解。用串并联的方法,不能将电路最终化为单一回路的复杂电路,其求解规律,反映在基尔霍夫定律中。基尔霍夫定律是电路的基本定律之一,它包含有两条定律,分别称为基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
1. 电路结构的基本名词
在基尔霍夫定律中,常要用到如下几个电路名词:
支路:在电路中通过同一电流的分支电路叫做支路。如图1-10的电路中,有三条支路,分别是I1、I2和IL流过的支路。
节点:有三条或三条以上支路的连接点叫做节点。如图1-10的电路中,有b、e两个节点。回路:闭合的电路叫做回路。回路可由一条或多条支路组成,但是只含一个闭合回路的电路叫网孔。如图1-10的电路中,有abcdef、abef和bcde三个回路,两个网孔,即abef和bcde。
图1-10 电路名词定义示意图
2.基尔霍夫电流定律(KCL)
根据电流连续性原理,在电路中任一时刻,流入节点的电流之和等于流出该节点的电流之和,节点上电流的代数和恒等于零,即
或 (1-35)
这一关系叫节点电流方程,是基尔霍夫电流定律,也称为基尔霍夫第一定律。该定律的应用可以由节点扩展到任一假设的闭合面。在应用KCL时,必须先假定各支路电流的参考方向,再列电流方程求解,根据计算结果,确定电流的实际方向。如果指定流入节点的电流为正(或负),则流出节点的电流为负(或正)。
3.基尔霍夫电压定律(KVL)
根据电位的单值性原理,在电路中任一瞬时,沿回路方向绕行一周,闭合回路内各段电压的代数和恒等于零,即回路中电动势的代数和恒等于电阻上电压降的代数和,其数学式为
或 (1-36)
这一关系叫回路电压方程,是基尔霍夫电压定律,也称为基尔霍夫第二定律。该定律的应用可以由闭合回路扩展到任一不闭合的电路上,但必须将开口处的电压列入方程中。在应用KVL时,必须先假定闭合回路中各电路元件的电压参考方向和回路的绕行方向,当两者的假定方向一致时,电压取“+”号;反之则电压取“-”号。
举例:例1-6
总结:
欧姆定律和基尔霍夫定律是电路分析的最基本定律。它们分别体现了元件和电路结构对电压、电流的约束关系。
复习:
1、什么是串联分压?什么是并联分流?举例说明。
2、简述基尔霍夫定律的内容
1.2.3 支路电流法
支路电流法是利用基尔霍夫两个定律列出电路的电流和电压方程,求解复杂电路中各支路电流的基本方法。支路法的解题步骤为:
(1)先标出电路中各支路电流、电压的参考方向和回路的绕行方向。
(2)如果电路中有n个节点,根据KCL列出n-1个独立的节点电流方程。
(3)如果电路中有m个回路,根据KVL列出m-(n-1)个独立回路电压方程。通常选电路中的网孔来列回路电压方程。
(4)代入已知数,解联立方程组,求出各支路电流。根据需要还可以求出电路中各元件的电压及功率。
1.2.4 叠加原理
在线性电路中,如果有多个电源供电(或作用),任一支路的电流(或电压)等于各电源单独供电时在该支路中产生电流的代数和。这就是叠加原理。它是分析线性电路的一个重要定理。它的应用可以由线性电路扩展到产生的原因和结果满足线性关系的系统中,但不能用叠加原理计算功率,因为功率是电流(或电压)的二次函数(P=RI2),不是线性关系。
在应用叠加定理时,应注意以下几点:
1)在考虑某一电源单独作用时,要假设其他独立电源为零值。电压源用短路替代,电动势为零;电流源开路,电流为零。电源有内阻的都保留在原处,其他元件的联接方式不变。
2)在考虑某一电源单独作用时,可将其参考方向选择为与原电路中对应响应的参考方向相同,且在叠加时用响应的代数值代入。也可以原电路中电压和电流的参考方向为准,分电压和分电流的参考方向与其一致时取正号,不一致时取负号。
3)叠加定理只能用于计算线性电路的电压和电流,不能计算功率等与电压或电流之间不是线性关系的量。
4)受控源不是独立电源,必须全部保留在各自的支路中。
举例:例1-7
1.2.5 戴维南定理和诺顿定理
1. 戴维南定理
图1-11 有源二端网络的等效电路
在图1-11的电路中,在电路分析计算中,有时只需计算电路中某一支路的电流,如果用前面介绍的方法,计算比较复杂,为了简化计算,可采用戴维南定理进行计算。戴维南定理表述如下:任何一个线性有源二端网络,对于外电路,可以用一个理想电压源和内阻串联组合的电路模型来等效。该电压源的电压等于有源二端网络的开路电压;内阻等于将有源二端网络变成相应的无源二端网络的等效电阻。此电路模型称为戴维南等效电路,二端网络即具有两个端钮与外电路联接的网络。二端网络的内部含有电源时称为有源二端网络,否则称为无源二端网络。所谓相应的无源二端网络的等效电阻,就是原有源二端网络所有的理想电源 (理想电压源或理想电流源)均除去时网络的二端电阻。除去理想电压源,即E=0,理想电压源所在处短路;除去理想电流源,即Is=0,理想电流源所在处开路。戴维南定理把有源二端网络用电压源来等效代替,故戴维南定理又称为等效电压源定理。
解题步骤: (1)断开支路求有源二端网络的开路电压U0
(2)将有源二端网络变为无源二端网络求等效电阻Rab。
(3)根据戴维南定理画出等效电压源电路。
(4)把断开的支路拿回来,求未知电流。
2. 诺顿定理
由于电压源与电流源可以等效变换,因此有源二端网络也可用电流源来等效代替。诺顿定理叙述如下:任一线性有源二端网络,对其外部电路来说,可用一个理想电流源和内阻相并联的有源电路来等效代替。其中理想电流源的电流Is等于网络的短路电流,内阻R0等于相应的无源二端网络的等效电阻。诺顿定理又称为等效电流源定理,它和戴维南定理一起合称为等效电源定理。
举例:例1-8
总结:
1、支路电流法是分析电路的基本方法。如果电路结构复杂,因电路方程增加使得支路电流法不太实用。
2、叠加定理适用于线性电路,是分析线性电路的基本定理。注意,叠加定理只适用于线性电路中的电压和电流。
3、戴维南定理和诺顿定理是电路分析中很常用的定理,运用它们往往可以简化复杂的电路。
复习:
1、支路电流法有什么特点?
2、简述叠加定理的解题方法
3、简述应用戴维南定理的解题步骤
㈤ 电生磁教案
电生磁是奥斯特发现的。原理:通电导体周围存在磁场。
电生磁
如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。磁场的方向可以根据“右手定则”(见图1)来确定:将右手拇指伸出,其余四指并拢弯向掌心。这时,拇指的方向为电流方向,而其余四指的方向是磁场的方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈NS极首尾相接的小磁铁的效果。
如果将一条长长的金属导线在一个空心筒上沿一个方向缠绕起来,形成的物体我们称为螺线管。如果使这个螺线管通电,那么会怎样?通电以后,螺线管的每一匝都会产生磁场,磁场的方向如图2中的圆形箭头所示。那么,在相邻的两匝之间的位置,由于磁场方向相反,总的磁场相抵消;而在螺线管内部和外部,每一匝线圈产生的磁场互相叠加起来,最终形成了如图2所示的磁场形状。也可以看出,在螺线管外部的磁场形状和一块磁铁产生的磁场形状是相同的。而螺线管内部的磁场刚好与外部的磁场组成闭合的磁力线。在图2中,螺线管表示成了上下两排圆,好象是把螺线管从中间切开来。上面的一排中有叉,表示电流从荧光屏里面流出;下面的一排中有一个黑点,表示电流从外面向荧光屏内部流进。
电生磁的一个应用实例是实验室常用的电磁铁。为了进行某些科学实验,经常用到较强的恒定磁场,但只有普通的螺线管是不够的。为此,除了尽可能多地绕制线圈以外,还采用两个相对的螺线管靠近放置,使得它们的N、S极相对,这样两个线包直接就产生了一个较强的磁场。另外,还在线包中间放置纯铁(称为磁轭),以聚集磁力线,增强线包中间的磁场,
对于一个很长的螺线管,其内部的磁场大小用下面的公式计算:H=nI
在这个公式中,I是流过螺线管的电流,n是单位长度内的螺线管圈数。
如果有两条通电的直导线相互靠近,会发生什么现象?我们首先假设两条导线的通电电流方向相反,图5(a)所示。那么,根据上面的说明,两条导线周围都产生圆形磁场,而且磁场的走向相反。在两条导线之间的位置会是说明情况呢?不难想象,在两条导线之间,磁场方向相同。这就好象在两条导线中间放置了两块磁铁,它们的N极和N极相对,S极和S极相对。由于同性相斥,这两条导线会产生排斥的力量。类似地,如果两条导线通过的电流方向相同,它们会互相吸引。
如果一条通电导线处于一个磁场中,由于导线也产生磁场,那么导线产生的磁场和原有磁场就会发生相互作用,使得导线受力。这就是电动机和喇叭的基本原理。