1. 等腰三角形的判定定理是什么
定义:有两边相等的三角形是等腰三角形
等腰三角形的性质:
等腰三角形的两个底角相等。
(简写成“等边对等角”)
等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
等腰三角形的底边上到两条腰的距离相等
等腰三角形的一腰上的高与底边的夹角等于顶角的一半
等腰三角形的判定:
有两条腰相等的三角形是等腰三角形
1.三角形的任何两边的和一定大于第三边
,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
4.;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)
等腰三角形的判定
1有两条边相等的三角形是等腰三角形
2有两个角相等的三角形是等腰三角形(简称:等角对等边)
3顶角的平分线,底边上的中线,底边上的高的重合的三角形是等腰三角形
(4所有的等边三角形为等腰三角形)
2. 怎样判定三角形全等 教学反思
很高兴回答你的问题,以下是我个人见解,希望可以帮到你:
三角形全等的判定教学反思
本节课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SAS\ASA\AAS\SSS)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,我让学生充分体验到动手操作、剪拼、翻折平移、推理证明的数学方法,一步步培养他们的逻辑推理能力。整节课让学生从画几何图形,剪拼,翻折平移,起到了较好的作用,学生更加清楚直观,以及学习推理证明的方法。
一、教学设计:
复习引入→探索HL→证明HL→实践应用→推出定理→课堂小结
【复习引入】
本环节想要通过思考“两个三角形全等需要哪些条件?”复习三角形全等的判定方法。再给出两个直角三角形Rt△ABC和Rt△A’B’C’,请学生来口述分别以SSS,SAS,AAS,ASA为依据,应补充的条件,巩固三角形的判定方法。
【探索HL】
通过上一个环节的回顾,让学生思考当条件为“∠C=C’,AB=A’B’,AC=A’C’”,符合条件的两个三角形是否全等。从而强调对于一般的三角形而言,SSA是无法判定两个三角形全等的。
因此,继续补充条件“∠C=C’=Rt∠”,此时,△ABC和△A’B’C’全等吗?让学生思考并证明,从而引出直角三角形全等的特殊判定方法——斜边和一条直角边对应相等的两个直角三角形全等,并提出需要注意的点。
【证明HL】
利用已知的条件“∠C=C’=Rt∠,AB=A’B’,AC=A’C’”,根据勾股定理,计算可得BC=B’C’,从而依据”SSS”可判定△ABC≌△A’B’C’,这是方法一。
方法二则是希望学生能观察到∠C和∠C’都是90°,因此相加等于180°,是一个平角。再则AC=A’C’,可将两个三角形拼成一个三角形,再根据斜边相等可得出,所拼的三角形是一个等腰三角形,从而利用等腰三角形的性质证明。
【实践应用】
通过一系列的练习,巩固学生对HL的认识和应用。
再给出书本例题,由于学生读题能力较弱,因此给学生时间自己读题,思考。例题的证明是HL的直接应用,引导学生提取题中的条件,若要证明点P在∠AOB的角平分线上,则需要什么结论?
学生很快提出要连结OP,证明∠AOP=∠BOP即可说明P是∠AOB的角平分线。那么要证明∠AOP=∠BOP,则需要利用HL证明△DOP≌△EOP推出。
【推出定理】
由例题的证明得出角平分线性质定理的逆定理:角的内部,到角两边的距离相等的点在角的角平分线上。
【课堂小结】
本节课的主要内容是直角三角形全等的判定方法HL,这是仅适用于直角三角形的判定方法。
通过HL得出角平分线性质定理的逆定理,是本节课的所得出的重要结论。
二、教学设计中的不足
1、学生在复习“SSS”的时候已经提出对于直角三角形我只需补充两条边的条件即可。而我在课堂上,没有重视学生的生成,可以顺着学生的思路,补充两个条件:①两条直角边;②一条直角边和斜边。若补充①,可根据SAS直接证明两个三角形全等。若补充②,引导学生思考,如何证明两个直角三角形全等,直接引出HL。
2、在【应用实践】环节,还是给出较多的两个三角形全等的辨析,有些重复,并且没有突出重点,还容易让学生混乱。因此,可将其中的某些练习删除,保留更多HL的应用证明。
3、课本例题经过分析之后,没有在黑板上板书完整的证明过程,没有突出板书的示范作用。同时,对于学生书写的落实不够,学生缺少独立书写的时间和机会,也导致了学生作业完成格式不规范的原因。因此,在今后的教学中,对例题分析完成之后,应给予学生一定时间书写证明过程。
4、在课堂的整体教学中,太过心急。学生没有及时反应时,就急忙对学生进行引导,给予学生思考时间不足。并且,在课堂上总是抢学生的话,啰啰嗦嗦讲个不停,不但没有对学生进行需要的引导作用,还扰乱学生读题的注意力和思考的思路。
5、启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;
6、在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;
7、在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。
三、对课堂教学的改进
1、在今后的教学中,对于课堂教学过程的设计还需多多向前辈讨教学生,碰到比较难处理的地方也可向周边老师学校讨论,设计更清晰的教学流程,不能含糊,生硬的压给学生。
2、关于课堂板书,分析过程写明之后,还应该书写完成的证明过程,示范给学生。因此,可以在分析完成之后,请学生打开随堂练习本,与老师一起书写证明过程,最后展示书写规范并美观的学生作品。
3、在日常教学中应注意自己的提问有效性,尽可能减少课堂中不必要的话,精炼并简洁课堂教学语言,避免习惯的养成。
望采纳,十分感谢。
3. 怎样判定三角形全等教学反思
三角形全等的判定教学反思一:
本节课是人教版八年级数学第十二章第二节的内容,主要探索三角形全等的条件及利用全等三角形进行证明,而我所讲授的是第一课时:《三角形全等的判定方法一(SSS)》,它是后面几种判定方法的基础,也是本章的重点及难点。教材看似简单,仔细研究后才发现,对八年级学生来说有些困难,处理不好是难以成功的,况且对学生以后学习几何起着关键作用,因此在上这一课时,我精心设计,从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作,大胆猜想,实践操作,相互交流验证,很好地解决了问题,圆满地完成了本节课的任务,表现在以下几个方面:
一、我认真备课,教学设计整体化,内容生活化。首先我让学生动手剪两个三角形使其全等,既提问复习了全等三角形的定义,又很好地过渡到确定一个三角形需哪些条件的问题上来,然后以“配玻璃”引入新课,激起学生的求知欲,让学生感觉到知识来源于生活实际,从而设计一个探究问题:怎么画一个三角形就能和剪的三角形全等?你认为至少需哪些条件?激起学生的求知欲,充分让学生自由交流讨论、大胆猜想,在课堂上引导让学生发现问题并通过动手操作、交流讨论来解决问题。
二、重点关注:“一个条件、“两个条件”包括的情形,以及不能形成的原因,让学生自行找出(或老师引导)。通过这节让学生实践,形成认知。
三、认真设计了“边边边”定理判定的演示,形成直观印象,课前我准备了每两根长短相同的6根小木棍,让学生摆成两个三角形,猜一猜是不是全等?后通过重合验证所猜结论,以及所需的结论。
四、利用尺规画一个三角形和手中剪的三角形全等,引导学生试着画图,并让学生发现存在的问题,最后给出确的画法,以学生的画图为主,展开探究活动,让学生亲身体验,从实践中获得“SSS”条件,培养学生探索、发现、概括规律的能力。
本节课在难点的突破、激发学生的兴趣、动手操作上取得了一定的成功,但是在以后教学中,也有值得思考的地方:(1)提前让学生准备好学具(如纸、剪刀、圆规等),分组时,优差互补,让人人学有所得。(2)教学时应多关注学生,,在学习新知识后,虽然大部分学生掌握了,但少数后进生仍然不理解。(3)要多列举学生中的案例,如:补全损坏的三角形。
总之,在数学课堂教学中,教师需时时刻刻注意给学生提供参考的机会,体现学生的主体地位,充分发挥学生的主观能动作用,尽量为学生提供“做中学”的平台,让学生在做的过程中借助自己已有的知识和方法主动探索新知识,扩大自己的知识结构,发展能力,从而使课堂教学真正为学生发展服务,这正是我今后努力的方向。
三角形全等的判定教学反思二:
从本周起,我们将学习《全等三角形判定》,对于刚刚进入八年级的学生,这既是一个重点也是一个难点,几何与代数最大的区别是:几何是看得见、摸得着的,代数中特别是函数则比较抽象,不易理解。就本章内容,希望能给我们的孩子点燃学习的火种,指明学习的方向,其实《全等三角形的判定》就这么简单。
我用四课时完成了“全等三角形判定”的学习。我的最大收获就是无论证明何种类型的全等题,学生都很少出现用SSA(假命题)证明全等的情况,而且百分之八十的学生都能比较清楚地表达验证的过程,并准确选择方法进行全等三角形的证明。所以说,本部分的教学设计是比较成功的,既给学生留下了比较充分地探索空间(如第一节课),又从学生已有的认知基础出发(如第二课时),同时注重了必要的练习巩固(如第四节课)。就第三节课来说,首先,本节课设计了探究活动,让学生带着问题进行探究,调动了学生学习的积极性,而且使好奇心得以持续发展。学生在探究活动中,通过观察猜想、操作验证、归纳概括等一系列活动,使学生对问题的本质理解更为深刻。学生不仅知道了全等三角形判定的方法,而且明白为什么可以通过它们证明两个三角形全等,也对“边边角”不能作为判定两个三角形全等的方法有了深刻的理解。
三角形全等的判定教学反思三:
反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容生活化。在课题的引入方面,然学生动手做、裁剪三角形。既提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。
2、把课堂充分地让给了学生。我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作一个两边长分别为6cm和8cm,并且这两边的夹角为45度的三角形,并要求相互之间互相比较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:“边角边公理”,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称“SAS”。
三角形全等的判定教学反思四:
一、教学目标的反思
《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。增强学生的观察、猜想和动手操作能力。
二、教学策略的反思
1、对分类的把握。对许多学生来说进行分类有困难,学生是否能准确分类,是本节课的难点和重点之一。要找到解决难点策略,就要找到造成难点的原因,学生之所以分类有困难是因为他们不知到从什么地方下手,以及做到不重不漏。
2、在运用中巩固知识。由于本节课的重点是找出三角形全等的判定,因而本节课不必理会如何书写“证明两个三角形全等”,所以我参考了一些同事的方法,采取了根据条件说出两个三角形全等的理由,或者写出两个条件,让学生灵活补充一个条件使得两个三角形一定全等。补充原设计的练习,学生们很来劲,效果显著。(注:“角角边”定理的证明留到下节课进行严格的书写证明。)
三、成效性反思
原教学设计附有作图练习卷(按要求作三角形,使得三角形有三个元素等于所给的具体值),在上课时将学生分成6组,每组完成同一个作图(其它为作业),每个同学独立完成作图,然后与小组成员比较所画图形的形状和大小并汇报给全班同学。
三角形全等的判定教学反思五:
我认为做得较好的地方有:
一、把课堂的主动权还给学生
本节课以提问的形式复习前面的判定方法,再让学生按要求动手画三角形,其次把三角形剪下来,跟同桌的三角形是否完全重合,最后看这两个三角形具备什么条件,归纳”SAS"定理。从方法的推导到运用都让学生充分发表自己的意见,老师根据学生的情况作适时指导,起到指导的作用。
二、突出重点、突破难点
本节课重点是运用“边角边”方法证明两个三角形全等,所设计的例题、练习都是运用“边角边”方法进行证明,学生会用“边角边”判定方法解决实际问题。
不足之处:
一、时间把握不准。由于给充分时间学生探索、运用“边角边”判定定理,由于高估学生的能力,各个环节实用时间都比计划的时间多,还有命题“两边及一边的对角对应相等的两个三角形全等
吗?”没时间探索,运用,只是画图说说而已,学生没真正弄懂,应留下一节再上。
二,没能做到关注每一位学生,教学没能做到分层次教学,有个别学生没有参与课堂,课堂反馈的信息不够全面。
三、板书不够合理、美观,要加强这方面的训练。
4. 等腰三角形的判定方法
(2)三角形中有两角相等,此三角形是等腰三角形
(3)三角形中有两边相等,则此三角形是等腰三角形
5. 等腰三角形的性质和判定方法
lz我是一楼的哦
请采纳我的意见
我怕下楼会复制 粘贴
<请问你是初中的吗、我初三了、初中只需要掌握一点点就可以了>
<以下是性质>
1.等腰三角形的两个底角相等。 (简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“等腰三角形的三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,正三角形有三条对称轴。
<以下是判定>
在同一三角形中,有两条边相等的三角形是等腰三角形(定义)<用定义来判定也可以>
在同一三角形中,有两个角相等的三角形是等腰三角形(在同一三角形中,等角对等边)
6. 怎样判定三角形全等ASA教学反思
三角形全等的判定(ASA、AAS)教学反思
[授课流程反思]
新课导人要注意培养版学生合情合理的逻辑推理能权力、语言表达能力,规范书写证明过程。
[讲授效果反思]
教学中应使学生正确的理解三角形全等的判定方法,并能用她来解决实际问题。教师应注意及时了解学生掌握判定三角形全等方法的过程。
[师生互动反思]
本节课通过情景引入问题,让学生亲身体验、动手操作来探索三角形全等的条件。整个探索过程,不仅是教师引导学生的过程,同时也是教师从学生的角度考虑问题,顾及全面、充分准备好自己的心理提升。
7. 等腰三角形的性质和判定
(1)(2)两道题用的都是全等三角形的判定——角角边
(1)
过b做fd延长线的垂线,交于q,由于fq=bp(矩形),只要证明de=dq即可,bd为公共边,一对直角和一对底角相等,三角形全等,即证。
(2)ed=bp+df,一样的道理,过b做ac的平行线,过点d做刚刚那条线的垂线,垂足为h,三角形bhd与三角形bed全等,即证。
8. 等腰三角形的判定
性质:
等腰三角形两腰相等(定义)
等腰三角形两角底角相等(等边对等角)
等腰三角形底边上的中线,底边上的高和顶角的平分线互相重合(三线合一)
判定:
有两边相等的三角形是等腰三角形
有两角相等的三角形是等腰三角形