『壹』 如何使用科学计数法
举个例子:3650000化简后得3.65(把小数点放在个位数之前!)*(这是乘号)10的6次方
『贰』 科学计数法
[编辑本段]科学计数法
将一个数字表示成 (a×10的n次幂的形式),其中1≤a<10,n表示整数,这种记数方法叫科学记数法。
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,10的三次方=1000,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=61×1 000 000 000=61×10的九次方。
任何非0实数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学计数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学计数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
有效数字
有效数字是指从左面数不为0的数
例如:890314000保留三位有效数字为8.90*10的8次方
839960000保留三位有效数字为8.40*10的8次方
0.00934593保留三位有效数字为0.00934
科学计数运算
数字很大的数,一般我们用科学计数法表示,例如6230000000000;我们可以用6.23×10^12表示,而它含义是什么呢?从直面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位,在计数中如
1. 3×10^4+4×10^4=7×10^4可以写成3E4+4E4=7E4
即 aEc+bEc=a+bEc (1)
2. 4×10^4-7×10^4=-3×10^4可以写成4E4-7E4=-3E4
即 aEc-bEc=a-bEc (2)
3. 3000000×600000=1800000000000
3e6*6e5=1.8e12
即 aEM×bEN=abE(M+N) (3)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即 aEM÷bEN=a/bE(M-N) (4)
5.有关的一些推导
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
(aEc)^n=a^nEnc
a×10^logb=ab
aElogb=ab
6.n"E"公式
3E4E5=30000E5=3E9
即aEbEc=aEb+c
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aEb+c+d
得aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
7.n"E"公式与数列
据n"E"公式aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n+1)/2×d
aEna1+n(n+1)/2×d
等比n项和公式Sn=a1n(q=1)或 n(1-q^n)/1-q
aESn [Sn=a1n(q=1)或 n(1-q^n)/1-q(q≠1) ]
数列通项计数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^n-1
8.aEb与aE-b
aEb=a×10^b
aEb=a×10^-b 正负b决定E的方向
科学计数意义
“aE”表示并非具有科学计数意义,并且aE=a
“Ea”表示具有科学计数意义,即Ea=1Ea a=3时 1E3=1000
aEb=c a=c/Eb
科学计数法
将一个数字表示成 (a×10的n次幂的形式),其中1≤a<10,n表示整数,这种记数方法叫科学记数法。
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,10的三次方=1000,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=6.1×1 000 000 000=6.1×10的九次方。
任何数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学计数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学计数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
有效数字
有效数字是指从左面数不为0的数
例如:890314000保留三位有效数字为8.90*10的8次方
839960000保留三位有效数字为8.40*10的8次方
0.00934593保留三位有效数字为0.00934
科学计数运算
数字很大的数,一般我们用科学计数法表示,例如6230000000000;我们可以用6.23×10^12表示,而它含义是什么呢?从直面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位,在计数中如
1. 3×10^4+4×10^4=7×10^4可以写成3E4+4E4=7E4
即 aEc+bEc=a+bEc (1)
2. 4×10^4-7×10^4=-3×10^4可以写成4E4-7E4=-3E4
即 aEc-bEc=a-bEc (2)
3. 3000000×600000=1800000000000
3E6×6E5=18E11
即 aEM×bEN=abEM+N (3)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即 aEM÷bEN=a/bEM-N (4)
5.有关的一些推导
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
(aEc)^n=a^nEnc
a×10^logb=ab
aElogb=ab
6.n"E"公式
3E4E5=30000E5=3E9
即aEbEc=aEb+c
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aEb+c+d
得aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
7.n"E"公式与数列
据n"E"公式aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n+1)/2×d
aEna1+n(n+1)/2×d
等比n项和公式Sn=a1n(q=1)或 n(1-q^n)/1-q
aESn [Sn=a1n(q=1)或 n(1-q^n)/1-q(q≠1) ]
数列通项计数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^n-1
8.aEb与aE-b
aEb=a×10^b
aEb=a×10^-b 正负b决定E的方向
科学计数意义
“aE”表示并非具有科学计数意义,并且aE=a
“Ea”表示具有科学计数意义,即Ea=1Ea a=3时 1E3=1000
aEb=c a=c/Eb
『叁』 什么是科学计数法
|科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(内1≤|a|<10,n为整数),容这种记数法叫做科学记数法。当我们要标记或运算某个较大或较小且位数较多时,用科学记数法免去浪费很多空间和时间。
在科学记数法中,一个数被写成一个1与10之间的实数(尾数)与一个10的幂的积,为了得到统一的表达方式,该尾数并不包括10:
例如:
782300=7.823×105
0.00012=1.2×10−4
10000=1×104
(3)科学计数法教学视频扩展阅读
在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。
例如:890314000保留三位有效数字为8.90×10的8次方
839960000保留三位有效数字为8.40×10的8次方
0.00934593保留三位有效数字为9.35×10的-3次方
0.004753=4.753×1/1000=4.753×10的-3次方
『肆』 怎么用科学计数法
记数法复
用幂的形式,制有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000 这样的大数,读、写都很不方便,考虑到10的幂有如下特点: 10的二次方=100,10的三次方=1000,10的四次方=10 000……。 一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如: 6 100 000 000=6.1×1 000 000 000=6.1×10的九次方。 任何非0实数的0次方都等于1 当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
『伍』 科学计数法`
2.083333333*10^5
『陆』 科学计数法
1.
方法一: 设置单元格格式为“文本”格式,然后录入数据。
2.
方法二: 先输入一个英回文状态的单引号, 那是答不可能的事,数字超过12位就会自动变为科学计数法显示,只有文本格式数字,才可以突破这个位数限制,而文本格式可以用多种办法,其中常用的有两种,一是在输入的数字前加个' 号,二是将单元格格式成文本格式
『柒』 详解科学计数法!
定义你会的 教你一个绝招吧 不是把一个数写成a×10的N次方吗
三个问题1.a只含有一位内整数容 如 2.55 6.33
2.比10大的数 N是此数的整数位数减一 如 23500=2.35×10的4次方
3.比1小的数N是负数 N是第一个不是0的数字前面零的个数的相反数(就是加个负号)
如 0.000025=2.5×10的-5次方
4.1----10呢等于此数×10的零次方
『捌』 什么叫科学计数法
科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为整数。)
科学计数法可以很回方便地表示一些答绝对值较大的数,同样,用科学计数法也可以很方便地表示一些绝对值较小的数。
一般地,一个小于1的正数可以表示为a×1oⁿ,其中1≤a<10,n是负整数。
(8)科学计数法教学视频扩展阅读
中国计数法的来源
计数法中国人在计数时,常常用笔画“正”字,一个“正”字有五画,代表5,两个“正”字就是10,以此类推。这个计数方法简便易懂,很受中国人欢迎。
清末民初,戏园(俗称茶园)是人们日常生活中重要的娱乐场所。每天戏园里要迎来很多观众。可是那时候还没有门票这种东西,戏园就安排“案目”(就是现在所说的服务员)在戏院门口招徕看客,领满五位入座,司事(记账先生)便在大水牌(类似黑板)上写出一个“正”字,并标明某案目的名字。座席前设有八仙桌,看客可边品茶边看戏。稍后由案目负责计数、收费。到散场结账时准确无误。
这个方法随着戏院实行门票制而被废弃了,但是作为一种简明、易懂、方便的记数法,一直流行于民间。到现在很多中国人在统计选票、清点财物等时候,都还保持着用“正”字计数的习惯。