导航:首页 > 教学教案 > 数学教学的基本原则

数学教学的基本原则

发布时间:2021-02-10 14:13:55

⑴ 中学数学教学有哪几大原则

第一节 中学数学的教学原则

教学原则是教学规律的反映,教学经验的结晶,是指导教学工作的基本要求,也是教师在教学工作中必须遵守的基本准则。
我国教育界在教学论中确定的一般教学原则有:科学性与思想性相结合的原则,理论联系实际的原则,教师的主导作用与学生的自觉性、积极性相结合的原则,感知与理解相结合的原则,循序前进性与系统性原则,掌握知识技能的巩固性原则,符合学生年龄特点和接受能力的原则,统一要求与因材施教的原则。
在一般教学原则的指导下,由于各科教学还有其特殊性,所以各学科的教学还应遵循符合本学科特点和学生年龄特征的学科教学原则。
在以传授知识为主的时代,我国广大的数学教育工作者和数学教师根据中学数学的特点、教学实践经验和中学生的年龄特征,总结出了许多行之有效的中学数学教学原则,其中影响最大的是:严谨性与量力性相结合的原则,抽象与具体相结合的原则,理论与实践相结合的原则,巩固与发展相结合的原则。
一.严谨性与量力性相结合的原则
1.数学理论的严谨性
严谨性是数学科学理论的基本特点之一,其涵义主要是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。它主要表现在以下两个方面:其一,概念(除原始概念外)必须定义;其二,命题(除公理外)都要证明。因此,
(1)每个数学分科所包含的数学概念都分为两类:原始概念和被定义过的概念。原始概念是这个学科中定义其他概念的出发点,其本质属性在该学科中无法用定义方式来表述,只能用公理来揭示;被定义的概念都必须确切的、符合逻辑要求。
(2)每个数学分科所包含的真命题也分为两类:公理和定理。公理是本学科中被挑选出来作为证明其他真命题的正确性的原始依据,其本身的正确性不加逻辑证明而被承认。但是,它们作为一个体系,必须满足相容性(无矛盾性)、独立性和完备性;定理都必须经过逻辑证明。
(3)每个数学分支的概念和真命题按一定的逻辑顺序构成一个体系。在该体系中,每个被定义的概念必须用前面已知的概念来定义;每个定理必须由前面已知其正确性的命题推导出来。
(4)概念和命题的陈述以及命题的论证过程日益符号化、形式化。
但是,数学的严谨性是相对的,是逐步发展的。严谨性并不是各数学分支发展初期就具有的,只是到了最后完善阶段才能达到。例如,函数概念经历了七个发展阶段才逐步严谨起来。欧氏几何直到19世纪末希尔伯特公理体系建立后才真正严谨起来。数学的严谨性还有另一方面的相对性。例如侧重于理论的基础数学和侧重于应用的应用数学,二者对于严谨性的要求是不尽相同的。前者要求高,而后者则相对地要求较低一些。
2.对中学生的量力性
在掌握数学科学的严谨性方面,必须根据中学生的知识水平和接受能力量力而行。对中学生的量力性,应该注意以下几点:
(1)对数学严谨性的要求,只能逐步适应,中学生在由低年级到高年级的学习过程中逐步达到。开始学习时往往都是不够严谨的,理解上依赖于直观,解题中依赖于模仿。例如,在小学和初中的数学教材中渗透了集合与对应的思想,但直到高中阶段才作初步的研究,进入理性认识阶段,才能逐步达到严谨的要求。因此,在教学中必须顺应学生认识的发展规律,要求恰当,量力而行。要有计划、有步骤地逐步提高要求,才能达到逐步理解和掌握教学严谨性的要求。
(2)对数学严谨性的认识具有相对性。由于数学的严谨性是相对的,人类认识数学的严谨性又经历了相当长期的过程。而且,中学生的学习本身也是一种认识活动,学习数学就是对人类经过漫长历史认识所获得的成果进行认识,这一认识过程不必要也不可能重复历史,而是在教师的指导下,遵循由低级到高级、由简单到复杂、由浅入深、逐步深入的一般认识规律进行的。再加上中学的数学课时和学生原有的基础知识与能力都有限,因此,中学生只可能认识数学的最基本的内容和方法,相应地,对数学严谨性的认识也只可能是基本的、相对的和初步的。
(3)中学生智力发展的可塑性很大。中学阶段正是青少年智力迅速发展的时期,中学生接受知识的能力既有局限,可塑性也很大,应该充分估计到他们认识上的潜力。在教学中应恰当地诱发他们的积极性,发挥他们的潜能,促进他们的思维发展。
3.严谨性与量力性相结合
数学科学是严谨的,中学生认识数学科学又要受量力性原则的制约,因此,在数学教学中,既要体现数学科学的本色,又要符合学生的实际,这就是严谨性与量力性相结合的原则对数学教学的总要求。这条原则的实质就是数学教学要兼顾严谨性与量力性这两方面的要求,一方面对数学教学的各个阶段要提出恰当而又明确的目的任务,另一方面要循序渐近地培养学生的逻辑思维能力。
在数学教学中,主要是通过下列的各项要求来贯彻严谨性与量力性相结合的原则的。
(1)教学要求应恰当、明确。这就是说,根据严谨性与量力性相结合的原则,妥善处理好科学数学体系与作为中学教育科目的数学体系之间的关系。
(2)教学中要逻辑严谨,思路清晰,语言准确。这就是说,在讲解数学知识时,要有意识地渗透形式逻辑方面的知识,注意培养逻辑思维,学会推理论证。数学中的每一个名词、术语、公式、法则都有精确的涵义,学生能否确切地理解它们的涵义是能否保证数学教学的科学性的重要标志之一,而学生理解的程度如何又常常反映在他们的语言表达之中。因此,应该要求学生掌握精确的数学语言。
为了培养学生语言精确,教师在数学语言上应有较高的素养。新教师在语言上要克服两种倾向:一是滥用学生还接受不了的语言和符号。例如对初一学生讲“每一个概念的定义中包含的判定性质是充分必要的”,并用双箭头符号表示。二是把日常流行而又不太准确的习惯语言带到教学中。如在讲授分式的约分时,常说:“约去上面的和下面的公因式。”这些话容易引起学生的误解,以致出现下面的错误:

因此,数学教师的语言应该既简练、又精确,力争达到规范化的要求。要防止随意制作定义,乱下判断的现象在教学中出现,不能为了通俗易懂,就用含义不十分确切的生活用语来代替数学术语。
(3)教学中注意由浅入深、由易到难、由已知到未知、由具体到抽象、由特殊到一般地讲解数学知识,要善于激发学生的求知欲,但所涉及的问题不宜太难,不能让学生望而生畏,这样才能取得好的教学效果。
总之,在强调严谨性时,不可忽视学生的可接受性;在强调量力性时,又不可忽视内容的科学性。只有将两者有机地结合起来,才能提高教学质量。
二.抽象与具体相结合的原则
1.数学的抽象性
一切科学都具有抽象性,但是数学是对客观对象的空间形式和数量关系这一特性的抽象。这一特性是事物最一般的也是最本质的特性之一,因而,数学的抽象需要舍弃事物的其它一切特性,达到很高的抽象程度。
数学的抽象性还表现为高度的概括性和应用的广泛性。概括,就是把从部分对象抽象出来的某一属性,推广到同类对象中去的思维过程。例如,从解某类习题的过程中抽象出来的某一解题方法推广到解同类习题中去。抽象和概括是互相联系、不可分离的,数学的抽象程度越高,其概括性也越强,应用范围也越广。
数学的抽象性还表现为广泛而系统地使用了数学符号,具有词语、词义、符号三位一体的特性,这是其它学科所无法比拟的。例如“平行”这个词,其词义是表示空间直线与直线、直线与平面、平面与平面的一种特定位置关系,有专门符号“//”表示,并可用具体图形表示。
数学的抽象是一个逐级抽象、逐次提高,抽象再抽象的过程。数学教学中充分注意到这个特点,就能有效地培养学生的抽象概括能力。
2.学生抽象思维的局限性
中学生正处于形象思维、经验型抽象思维的水平,到了高中才逐步向理论型抽象思维过渡。由于受年龄、理解问题的能力、认识问题的方位等特点的影响,他们的抽象思维具有一定的局限性。其具体表现为:过分地依赖于具体素材,即从其中可以抽象出所学概念和结论的事例;具体与抽象相割裂,对抽象理论的理解与掌握有片面性、局限性,不能将抽象理论应用到具体问题中去;对抽象的数学对象间的关系不易掌握等方面。
3.抽象与具体相结合
数学理论的抽象性与中学生抽象思维的局限性是中学数学教学中的一对矛盾。如何处理好这对矛盾的关系,关键在于正确理解认识具体与抽象的基本关系——具体是抽象的基础,抽象又以具体为归宿,且有待于上升到高一级的抽象。
(1)从具体到抽象,培养和发展学生的抽象思维能力和创新意识。从具体到抽象在认识上是一个飞跃,是感性上升到理性的一个阶段。在中学数学教学中,应该注意从实例引入,通过实物(包括教具)直观、图象直观或语言直观,形成直观形象,提供感性材料,这是促进和发展学生抽象思维能力的有效途径,例如,通过温度的升降,货物的进出口等实例,引进意义相反的量;通过观察教室里墙面与墙面的交线和墙面与地面的交线之间的关系,引进异面直线垂直的概念等等。应注意从特例引入,讲解一般性的规律。例如,一元二次方程的解法,一般先学习x2=a型,后学习(x+a)2=b型,再学习ax2+bx+c=0型,这样学生比较容易接受。数形结合的方法可以作为直观化的一种重要手段,有利于学生分析、发现和理解。
在中学数学教学中,为了培养和发展学生的抽象思维能力,教师的主要任务在于创设具体的数学情境,启发引导学生积极参与教学活动,防止包办代替。
(2)从抽象到具体,形成技能和进一步培养学生的分析问题、解决问题的能力。从抽象到具体是认识的又一个阶段,它是在从具体的感性认识上升到抽象的理性认识的基础上的又一次飞跃,它属于整个认识过程的更重要的阶段,也就是应用数学理论去初步解决问题,使理性认识具体化的新阶段。
从抽象到具体,是让学生在掌握抽象的数学理论的基础上,用来解决具体的实际问题,并为进一步的从具体到抽象做好准备。解答数学题的过程,主要是抽象的数学理论的运用过程,是形成数学的相关技能的过程,同时,也是进一步培养和发展观察能力和分析、综合等逻辑思维能力的过程;在解答难度较大的数学题时,除了运用抽象理论外,还可能学到一些新的数学思想和方法,对于培养学生的创造性思维能力也有一定的作用。
抽象与具体将结合,是为了使学生对抽象的理论理解得正确、认识得深刻。具体、直观仅仅是手段,而培养抽象思维能力才是根本的目的。因此,只有不断地实施具体——抽象——具体,循环往复的过程,才能不断将学习向纵深发展,使认识逐步提高和深化。
三.理论与实践相结合的原则
1.数学理论与实践的辩证统一
数学理论的抽象性、严谨性都有实践基础,数学理论又具有广泛的应用性。这说明了数学理论既来自于实践,又反过来指导实践,在实践中接受检验和发展。这就是数学理论与实践的辩证统一。
数学理论来源于实践。通过把实践中多种多样的客观事物、现象,根据需要经过分析、综合,归纳出简单而又具有普遍性的道理,从而形成抽象形式的理论,这就是“由繁到简”的认识过程。例如,二次函数y=ax2就是将许多实际的数量关系抽象概括而来的,形成这一数学模型的抽象理论后,它就具有更大的普遍性。对其中的字母赋予不同的含义,就可以表示不同的数量关系,比如自由落体运动公式S=gt2、能量公式E=mv2、圆面积公式S=πr2等等。
正是由于数学理论的精而简和普遍性,才使得它能用来“以简驭繁”,指导实践,应用广泛地去解决问题,同时在解决问题的实践中检验理论、发展理论。
2.中学生学习数学的实际
中学生学习数学的过程,是一种特殊的认识与实践的过程。这就是在教师的指导下,以课堂教学形式为主、以学习间接知识为主的学习过程。
中学生学习的数学理论知识,是经过前人若干世纪的实践锤炼、整理而形成的。由于课堂教学时间有限,对中学数学中的基础知识,不可能也不必要都从实际开始,更不可能事事都让学生去发现。但是应该尽量让学生了解知识的实际背景,来龙去脉,参与知识的形成过程,从而逐步树立正确的数学观。
将生产实际、生活实际问题抽象出明确的数学问题,从而建立起清晰的数学模型,对中学生来说,是十分困难的问题。这也是造成许多学生害怕学数学,进而不愿学数学的重要原因。
中学生由于对数学原理不理解或理解不深刻,不善于具体分析,往往停留在死记硬背、生搬硬套的水平上,对数学问题中的数量关系往往分析不清楚,因此,在应用理论解决实际问题中,很难发挥理论的指导作用。
3.理论与实践相结合
理论与实践相结合,既是认识论与方法论的基本原则,又是教学论与学习论的基本原则。应用这一原则进行教学时,应该注意以下几方面:
(1)注重中学数学与实际的联系。在教学中,教师必须从实际出发,从学生熟知的生活、生产实际出发,创设适当的数学情境,逐步教会学生提出数学问题、解决数学问题,逐步达到数学知识与实践的统一。
(2)大力提高理论水平,强化理论的指导作用。理论联系实际的中心环节是深刻理解理论、发挥理论的指导作用。只有加深知识理解,提高中学数学教学的理论水平,才能牢固掌握有关的数学知识,使之应用到实践中去。应试教育的影响之大,一个重要的原因就是由于理论水平不高,缺乏理论指导,只讲算法不讲算理;不注重理解和系统掌握,满足于记忆加模仿;不注重科学的“通法”,追求所谓解题技巧等等。
(3)掌握好理论与实践相结合的度。在中学数学教学中,如何创设数学情境,使之与要学习的数学知识密切联系,从而有利于培养学生提出问题的能力;学生应当掌握哪些典型实际问题,根据数学情境提出数学问题应该达到什么程度与要求,根据数学建模的思想方法,通过从实际问题抽象出数学问题的训练,如何有计划地培养学生的抽象能力、分析与综合能力、类比能力等各种能力,进而建立数学模型,解决数学问题,从而解决实际问题,都需要有计划、经常化,全面地进行考虑。
四.巩固与发展相结合的原则
巩固与发展相结合,是科学的教学原则之一,它是由中学数学的课程目标、教学特点与规律所决定的,是受人的记忆发展的心理规律所制约的。巩固是为了发展知识,而发展了的知识反过来又可以促进知识的牢固掌握。
1.巩固所学的数学知识
知识的掌握包括感知、领会、巩固与应用四个有联系的层次和过程。感知是由不知到知,领会是由浅知到深知,巩固是由遗忘到保持,应用是由认识到行动的过程。掌握知识的目的在于应用,但如果所学的知识得不够巩固,应用也就成了空话。要巩固所学的知识,关键在于记忆,只有提高记忆力,才能牢固掌握数学基础知识和基本技能。
(1)理解是记忆的基础。数学知识只有在被深刻理解的基础上才能被牢固地记忆。在教学中,加强基础知识教学,从多方面揭示数学事实、数学概念和原理的本质,建立一定的逻辑体系,使学生深刻理解,这是增强记忆、巩固知识的有效办法;而善于引导学生理解事物间的联系,充分利用已有知识和经验,使新联系在已有联系的基础上建立,把新知识纳入相应的知识系统,不断充实和完善认知结构,也是使学生深入理解、牢固记忆的好办法。
(2)形象识记与逻辑识记有机结合。在教学中,充分揭示数学知识和客观实际的联系,新旧知识的关系和联系,各单元之间的内在联系,适当借助直观化手段,把理论知识与实际结合起来,有利于达到巩固知识的目的。因此,对定理、公式、法则的讲解,除了注意逻辑推理外,还应该注意采用适当的直观手段,比如实物、模型、图表、图解、图示等等,来说明其意义,帮助学生在头脑中形成直观的形象,从而促进记忆。
(3)通过归纳、类比,引起联想促进记忆。对于性质相近、形状相似的同类事物可以引起类似联想。对于具有相反特点的事物引起的对比联想,当矛盾的一方出现时,可以引起对矛盾的另一方的联想,从而提高记忆的效果。还可以从事物的因果关系、从属关系上进行关系联想。例如数的概念的扩充,其知识内容一环套一环,在逻辑上是因果关系,从属关系。理解这些关系,有利于记忆。
(4)识记与再现相结合,加速与巩固记忆。在教学中要让学生在学习中掌握遗忘规律,合理地组织复习,设法促进知识的再现。同时要注意复习方式的多样化,防止单调的机械重复,以提高巩固知识的效率。
2.注重发展学生思维
数学教学的目的不仅要使学生牢固地掌握系统的知识和技能,更重要的是培养学生的创新思维和实践能力。只有让学生的思维得到发展,才能更深刻地理解和巩固所学的知识,从而提高学生的实践能力。“数学是人类思维的体操”,说明数学教学必须发展学生的思维,而且有利于发展思维。
(1)在教学中要明确思维的目标与方向。学生的思维从问题开始,没有挑战性的问题,不能激发起学生的思维。因此,在教学中应该提出有启发性的问题,创设问题情境,使学生明确思维的方向,从而激发学习的兴趣,促进思维的发展,提出数学问题,进而解决数学问题,并能应用于实际中去,使学生的创新意识和实践能力都得到培养。
有一位教师在讲三角形的分类时,给出了如下三幅图

让学生根据图形中显然出的三角形的部分判别三角形的类型。学生在判别第一幅图中的三角形的类型时,产生了很大的争论,最后在教师的指导下统一了认识,获得了正确的结果,对学生思维的发展起到了促进的作用。
(2)给学生进行思维加工提供充足的原料。学生的思维过程,就是对输入信息加工的过程,因而,信息就是思维加工的原料。只有原料充足,思维加工才会有效地进行。在中学数学教学中,可供给学生的信息不外乎语言和表象。数学公式、符号等都属于语言信息,图象、模型、教具等属于表现信息。在教学中,只有不断丰富和积累这些数学语言和表象,明确这些思维加工原料的意义,才能促进思维的发展。
(3)要发展抽象思维形式。要发展思维,就要发展思维形式。抽象思维有概念、判断和推理三大形式,概念是基础,判断是概念的联接,推理是判断的组合。在中学数学教学中,首先要让学生掌握一系列的数学概念,才能在此基础上进行正确的判断,并进行正确的推理。只有这样,才能在不断掌握数学基础知识和一定的数学技能的过程中,发展学生的思维。
(4)要教会学生掌握思维的方法。中学数学中的思维方法一般有:分析与综合、比较与归类、抽象与概括、归纳与演绎、系统化与具体化、一般化与特殊化等。这些思维方法是互相联系、交织在一起的,在学习和运用的实践中,必须综合应用,才能正常地思维,才能理解和巩固所学知识,在实践中发现问题、解决问题。
3.巩固与发展相结合
巩固与发展相结合,就是要把牢固地掌握数学基础知识、基本技能和发展思维、提高能力结合起来。巩固知识的关键在于知识系统化和应用,发展思维的关键在于逻辑化和训练。因此,在教学中应该有效地组织复习,温故而知新,举一反三,触类旁通,使学生的知识系统化、不断深化,思维得到训练和发展,能力得到提高。
为了在教学中能够很好地贯彻巩固与发展相结合的原则,应该注意以下两方面:
(1)认真研究对学生所学知识、技能和方法进行复习巩固的工作。要全面系统地复习基础知识,让学生领会基本的数学思想和方法。适时地进行单元复习、总复习,使所学的知识系统化,形成有机的知识体系。领会了知识体系中数学思想方法,就不仅能举一反三、灵活应用,达到巩固和深化的目的,而且能够将这些知识系统逐渐内化,由量变到质变,从而引起和促进学生思维整体结构的发展,提高学习和应用数学的能力。
(2)围绕教学目的,着眼发展思维和培养能力,精心选配复习题。选配复习题不仅要具有概念性、基础性、典型性、针对性、综合性,而且还要有启发性、思考性、灵活性和创造性等特点。例如,利用成套题复习,有利于调动各种手段,贯通各种方法,提高学生应用数学知识的能力;利用一题多解的习题复习,有利于发展学生的求异思维,提高解题能力;利用变式题进行复习,有利于培养学生思维的灵活性和创造性;利用改错题进行复习,有利于培养学生思维的批判性,提高科学的辨别能力;利用引申题进行复习,可以培养学生思维的灵活性和深刻性,提高学生的数学能力。

⑵ 教学的基本原则是什么

一、答案:
教学的基本原则是:
教学整体性原则
它包含着两重含义:一是教学所承担的任务具有整体性,教学任务的完成应是完整的,全面的,不能有任何方面的偏废;二是指教学活动的本身具有整体性,教学是由一系列教学要素构成的一个完整系统。
启发创造原则
这一教学原则是指教师在教学活动中要最大限度地调动学生学习的积极性和自觉性,激发他们的创造性思维,从而使学生在融会贯通地掌握知识的同时,充分发展自己的创造性能力与创造性人格。
理论联系实际原则
这一教学原则是指教学活动必须坚持理论与实际的结合和统一,用理论分析实际,用实际验证理论,使学生从理论和实际的结合中理解、掌握知识,并在这个结合的过程中学会运用知识。
有序性原则
这一教学原则是指教学工作要结合学科的逻辑结构和学生的身心发展情况,有次序、有步骤地开展和进行,以期使学生能够有效地掌握系统的科学知识,有效地促进学生身心的健康发展。
师生协同原则
这一教学原则主要是指在教学活动中,教师在充分发挥自身作用的同时,还要充分调动学生的积极性和主动性,使教学过程真正处于师生协同活动,相互促进的状态之中。其实质就是要处理好教师与学生,教与学的关系。
因材施教原则
因材施教原则要求教师在教学活动中,从学生的实际出发,根据不同教学对象的具体情况,采取不同的方式和方法,进行差异性的教育,使每个学生都能在各自原有的基础上得到自己充分的,最好的发展。
积累与熟练原则
这一教学原则是指教学活动应该使学生在理解的基础上,获得广博、深厚和牢固的基础知识和基本技能,形成良好的个性品质,进而使他们对知识、技能的掌握能够达到熟练和运用自如的程度。
反馈调节原则
这一教学原则是指在教学活动中,教师与学生从教和学的活动中及时获得反馈信息,以便及时了解教与学的情况,并能够及时有效地调节和控制教学活动的顺利开展,达到提高教学效率和教学质量的目的。
教学最优化原则
这一教学原则是指教学活动中,要对教学效果起制约作用的各种因素,进行综合调控,实施最优的教学,取得最优的教学效果。
二、教学原则的含义:
教学原则是有效进行教学必须遵循的基本要求和原理。它既指导教师的教,也指导学生的学,应贯彻于教学过程的各个方面和始终。
三、教学原则的意义:

1.教学原则对教学活动的顺利有效进行有着指导性和调节性的意义。
作为教学活动的准则,它必然能够对教学活动的各个方面起着指导和调控的作用,能够为教师提供积极有效的开展教学活动的依据。
2.教学原则在一定程度上决定了教学内容、教学方法与手段、教学组织形式的选择。 教学原则确定之后,对教学活动中的内容、方法、手、形式的选择,都有着积极而重要的作用。巴拉诺夫指出:“教学论原则决定教学方法。选择教学方法和论证其效果有赖于作为这些方法基础的教学论原则。教学论原则体系,就是对学习和掌握教材的基本途径的总的说明。”
3.科学的教学原则可以有效地提高教学效率。
科学的教学原则在人们的教学活动的实践中灵活有效的运用,对教学活动的有效顺利地开展,对提高教学活动的质量和效率都会有着积极的作用。

⑶ 学前儿童数学教育应遵循哪些基本原则

1、通过和环境相互作用进行幼儿数学教育

教师最好让幼儿通过和环境的相互作用进行数学学习。一个精心安排的环境能促进幼儿思维的发展,发展数学概念。

2、通过游戏进行幼儿数学教育。

在游戏中,幼儿可获得数学知识,并有机会自由地表现自己,表达自己的感受。

3、通过操作进行数学教育

只有在幼儿参与了大量的活动,使用了大量的材料,并经常讨论他们的观察和发现,幼儿才有可能掌握概念。

4、通过各种活动进行数学教育

儿童学习的方式和各自的爱好是不同的,教师应该设计各种活动,提供不同选择的机会,以满足不同儿童的各种需要。

5、通过激发幼儿的思维来进行数学教育

教师应该提倡启发式的教学,鼓励儿童通过操作,进行探索。在这个过程中,教师要设置各种问题情境,让幼儿进行思考,自己得出答案。

6、通过激发幼儿的情感来进行数学教育

应该通过提供幼儿可接受的、鼓励的、刺激的、可欣赏的环境,以此激发幼儿学习数学的兴趣,并使他们确信自己是有能力学好数学的,培养他们对数学的积极态度。

7、通过语言进行数学教育

教师在教学中应该采用生动、简洁、正确的语言表达,同时也给幼儿用语言表达自己对数学概念的理解的机会。

8、通过讨论进行数学教育

教师应该为幼儿提供机会,让他们有自由表达的机会,并和同伴一起讨论他们的发现和问题。



(3)数学教学的基本原则扩展阅读

学前儿童数学教育的意义:有助于幼儿对生活和周围世界的正确认识;有助于培养幼儿的好奇心、探究欲及对数学的兴趣;有助于幼儿思维能力及良好思维品质的培养;有助于日后的小学数学学习。

学前儿童数学教育的任务:培养幼儿对数学的兴趣和探究欲;发展幼儿初步的逻辑思维能力和解决问题的能力;为幼儿提供和创设促进其数学学习的环境和材料;促进幼儿对初浅数学知识和概念的理解

学前儿童数学教育的方法:操作法、游戏法、比较法、讨论法、发现法、讲解演示法、寻找法。

学前儿童数学教育的环境创设:感受数学美,使儿童亲近数学、喜欢数学;渗透数形结合,变抽象数学为形象数学;充分利用空间与材料,引发儿童自发、自主的探究与学习。

⑷ 在新课程标准的实施下,数学教学设计应该遵循哪些基本原则

传统的数学教学模式是以教师、课堂、书本为中心的,课堂教学是一种固定不变的模式,即复习新课-讲授新课-练习巩固。即使在学习环节中注重了“预习”,也是为了更好地“讲授新课”,为了更好、更快地让学生接受“新知”。久而久之,客观上导致了学生思维的依赖性和惰性,因而也就根本谈不上让学生主动学习、主动探索,以致于丧失了创造力。因此,新的数学课程强调,学生的数学学习内容应当是现实的、有意义的、富有挑战性的,要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
1、教学设计的特征
传统意义上的教学设计过分强调预设、封闭,使课堂教学变得机械,沉闷和程式化,师生的创造性得不到充分发挥。而现在新颁布的数学课程标准,明确提出了知识与技能,过程与方法以及情感态度和价值观的三维目标,以实现结论与过程,认知与情感、科学世界与生活世界的统一。因此,符合新课程标准理念的教学设计应该具有以下主要特征:
1.1整合性
在设计课堂教学目标时,应体现知识与能力,过程与方法,情感与态度的有机整合;在设计的各个教学环节中,应紧紧围绕目标,让学生通过主动探索,获得数学知识,掌握数学思想和方法,培养学生丰富的情感,积极的态度和正确的价值观。
1.2交互性
课堂师生交互实现了教学过程的完整化。教学本是师生双方在同一时空中共同参与的传授活动,双方互动,相互依存,相互制约,贯穿着教学的全过程。一份好的教学设计不仅应体现教师如何教,同时也应体现学生如何学,以促使师生之间的知识互动,情感互动和思维的碰撞,让课堂焕发出生命的活力。
1.3开放性
教学设计在教学内容上,应从传统的书本知识向学生的生活数学开放,把学生的个体知识,直接经验看成重要的课程资源;在教学过程上,应从单向的教师教,学生学向师生交往,互动开放,让预设的教学目标在实施过程中开放地纳入学生的直接经验以及始料未及的体验;在教学方法上,应从灌输式、填压式的教学向学生的自主学习、探究学习、合作学习开放;在练习的设计上,应从答案唯一、解法唯一、向条件、问题算法和结果的不唯一开放,以发展学生的思维,培养学生的创新意识。
1.4实效性
教学有法,但无定法,贵在得法,重在实效。教学设计的最终目的是为了实现课堂教学目标,所有的教学内容的确定、教学策略的选择,教学媒体的选定,教学情境的创设,课堂教学结构的安排等,都必须注重实效,并摒弃与实现目标无关的内容,方法和形式,扎实地提高学生的素质。
2、课堂教学设计的主要策略
课堂教学设计反映着教师的教育理念和教学策略,反映着教师教学的轨迹。在新的课改实验中,小学数学教材的内容,课堂教学结构,学生学习方式和师生角色等方面都发生了很大变化,无疑教学设计应与时俱进。其主要策略是:
2.1创设教学情境,激发参与兴趣
兴趣是推动学生学习的一种最实际的内部驱动力,是学生学习积极性中最现实,最活跃的心理成份。学生一旦对学习发生了兴趣,就会在大脑中形成优势兴奋中心,促使各种感官包括大脑处于最活跃状态,引起学生的高度注意,从而为参与学习提供最佳的心理准备。可见浓厚的学习兴趣是促使学生参与学习的前提。因此,在课堂教学中,通过各种途径创设与教学有关的、使学生感到真实、新奇、有趣的教学情境,形成学生“心求通而未得”的心态,产生跃跃欲试的探索意识,以激发学生参与兴趣。教学中,教师可采取讲故事、猜谜语、念儿歌、开展游戏等形式,把抽象的数学知识与生动实际内容联系起来,激起学生心理上的需求。例如,有的教师在教“分数的基本性质”时,别具匠心地创设了情境,使学生在愉快而又紧张的氛围中学会这一抽象的知识。刚上课,教师给学生讲一个“猴子分饼”的故事:猴山上的小猴喜欢吃猴王做的饼。一天,做了3个大小同样的饼,先把第一个饼平均分成4块,给猴甲1块。猴乙看到说;“太少了,我要2块”,猴王把第二块饼平均分成8块,给他2块。猴丙更贪心,说:“我要3块”,猴王又拿出第三个饼平均分成12块,给他3块。“小朋友,你们知道哪只猴子吃得多?”不一会儿,学生都说:“同样多”。于是,教师追问:“聪明的猴王是用什么办法来满足小猴的要求,而且又分得公平呢,你们想知道吗?”正当学生聚精会神地听完故事,而又百思不得其要领时,老师说:“通过今天的学习,你们就知道了!”在学生最佳的心理状态之下进行了新课。在教师引导下,大家通过比较、综合、抽象、概括,逐步得出分数基本性质的内涵后,教师风趣地激活学生的思路:“现在你们知道猴王是用什么规律来分饼了吧!”“如果猴丁要4块,你们想猴王该怎么办?要5块呢……”学生们信心十足地回答出来,此时老师充分表扬大家:“你们真比猴王还聪明!”既巩固了新知识,又满足了学生求知欲望,整个40分钟学生始终在愉悦、欢乐但又紧张的气氛中学习,体现在“在愉快中求发展,在发展中求愉快。”
2.2精心设计学习方式,引导学生合作探究
新课标主要的是以学生发展为中心的“合作—探究”的互动式教学,教师通过相互矛盾的事件引起学生认识的不平衡,引导学生在自主探索和合作交流的过程中,理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的活动经验。
2.3注重过程,发展学生的创新思维
数学课程标准指出:“要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”这一理念揭示数学教学不仅仅是为了掌握现成的知识结论,更重要的目的是将可得的知识迁移到新情境中,让学生创造性地解决问题。

⑸ 数学概念教学应该遵循哪些基本原则

教学来原则是根据教育自教学目的、反映教学规律而制定的指导教学工作的基本要求。它既指教师的教,也指学生的学,应贯彻于教学过程的各个方面和始终。它反映了人们对教学活动本质性特点和内在规律性的认识,是指导教学工作有效进行的指导性原理和行为准则。教学原则在教学活动中的正确和灵活运用,对提高教学质量和教学效率发挥着一种重要的保障性作用。 教学原则对教学规律的反映不同于教学原理。这种反映不是对教学客观规律的直接反映,这种反映取决于人们对教学客观规律主观认识的深刻程度,从而对教学原则的研究表现出了一种“众说纷纭”的现象: 第一,在同样的教学规律面前,提出了不同的教学原则。 第二,由于对同一客观的教学规律认识不同,因而提出的教学原则也不相同。 第三,教学原则与教学规律彼此之间不一定是单义的联系。 【参考资料:网络“教学原则”】

⑹ 中学数学教学有哪几大原则

教学原则是教学规律的反映,教学经验的结晶,是指导教学工作的基本要求,也专是教师在教学工作中属必须遵守的基本准则。
我国教育界在教学论中确定的一般教学原则有:科学性与思想性相结合的原则,理论联系实际的原则,教师的主导作用与学生的自觉性、积极性相结合的原则,感知与理解相结合的原则,循序前进性与系统性原则,掌握知识技能的巩固性原则,符合学生年龄特点和接受能力的原则,统一要求与因材施教的原则。
在一般教学原则的指导下,由于各科教学还有其特殊性,所以各学科的教学还应遵循符合本学科特点和学生年龄特征的学科教学原则。
在以传授知识为主的时代,我国广大的数学教育工作者和数学教师根据中学数学的特点、教学实践经验和中学生的年龄特征,总结出了许多行之有效的中学数学教学原则,其中影响最大的是:严谨性与量力性相结合的原则,抽象与具体相结合的原则,理论与实践相结合的原则,巩固与发展相结合的原则。

⑺ 数学教学要求

数学课堂教学的本质是数学活动,数学活动的本质是思维活动,有效的数学学习活动不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流也不能完全体现课堂学习的内容要求,这就要求我们正确认识直接经验和间接经验的关系,合理地设计数学活动单元,用思维活动这条主线,沟通活动单元、数学思想方法和思维方式。使不同的学生在数学活动中均得到发展,为了防止思维失真,必须保证学生活动时间,并适度推迟对结论的判断,数学活动单元的设计,提倡不同的学习内容适应不同的学习方式,突出数学中的活动和活动中的数学,体现中学的新课标理念。强调教与学的整合和贴近,使学生在不同的活动单元中,既掌握必须的知识与技能,又获得方法和能力,从而保证了双基的落实和能力的培养,关注学生在活动中的感受和成长,符合新课标对学生发展提出的三维目标要求。

为改进课堂教学方式,体现知识与技能,过程与方法,情感态度价值观并重的教学要求,须根据数学课程标准的有关要求,以及教学内容、教学方式、教学效果反映出的教学方法,按研究教学内容→制定分解目标→设计单元活动→整合教学方法→有效组织教学的思路,落实每个环节工作,这里就以数学活动为中心的备课谈一些看法。

1、分解教学目标,把握活动要领。
教学目标的制定和落实是有效实施课堂教学的关键,也是当前课堂教学需要解决的问题,由于新的教学目标强调知识与技能、过程与方法、情感态度价值观并重的三元体系,需要正确认识知识技能目标与过程性目标的关系,找准其中的生成点和结合点,转化为教与学活动。由于仅有笼统的教学目标而不进行活动分解,目标容易模糊,教学方法容易单调,教学过程不易把握。因此,要求合理分解教学目标,形成教与学的双边活动,并通过关键的行为动词,把握活动要求,体现新的教学理念和教学过程的可操作性。

2、贴近教学内容,反映教学方法
数学课把教学内容和学习要求变成数学活动单元,能有效的落实教学目标,有助于教学中把握不同活动的方法。数学活动单元设计是在教学要求、学习方式、学生经验、数学规律和教材特点的基础上,用活动作为主线串联相应的知识点,突出不同的学习要求和学习方式,反映不同活动单元的核心内容,形成不同活动的重点和相应操作要求。数学活动单元有很强的操作性,容易体现知识技能与过程方法,有助于通过活动加深对数学本质的认识,感受其中的数学思想方法,掌握解决问题的基本策略。

3、整合学习资源,完善教学设计
数学活动单元是以有效学习为目的进行设计的,着眼于学生在学习活动中的效果和价值,教师在其中的定位只是数学活动的.组织者、引导者与合作者。这就要求数学活动单元中的学习内容应当是现实的、有意义的、富有挑战性的,这些内容应有利于学生主动地进行观察、实验、猜测、验证、推理、交流等活动。因此,合理开发学习资源,有效调动学生参与数学学习显得非常重要;教师要有意识地进行教学资源的开发与整合,关注学生的生活实际,关注教材的内容链接。由于新教材要求充分使用操作、视、听等手段,因此,教师不能像过去一样,要充分利用远程教育资源,使静态的教材变成动态的教学素材。

4、关注学生活动,体现数学本质
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的学习活动应当是一个生动活泼的、主动的和富有个性的过程。数学活动单元应满足不同学生的需要,使不同学生在数学学习活动中得到发展。因此,要从活动组织和内容选择上合理思考,立足于基本问题引导学生操作、观察、实验、归纳、类比、猜想,立足于基本问题中的思维价值,防止内容选择不当,形成认知障碍,防止组织不当,造成活动形式单调和失真。

⑻ 请论述小学数学教学设计的五大原则

(一)、教学背景教学背景分析包括教学对象分析、教材分析、教学内容分析内、以及前期教学状况、问容题、对策等方面的研究说明。(二)、教学目标
教学目标既是教学的起点,也是教学的归宿,确立合理、适当的教学目标是教学设计最重要的任务。(三)、 教学重点难点
教学重点是指学科或教材内容中最基本、最重要的知识和技能,是教材中最重要、最基本的中心内容,是知识网络中的联结点,是设计教学结构的主要线索。
(四)、教学策略制定
所谓教学策略,就是为了实现教学目标,完成教学任务所采用的方法、步骤,媒体和组织形式等教学措施构成的综合性方案。
(五)、教学过程
在做好课前分析后,接下来要进行课堂教学的设计。众所周知,现代教学系统由教师、学生、教学内容和教学媒体等四个要素组成,教学系统的运动变化表现为教学过程。教学过程是课堂教学设计的核心,教学目标、教学任务、教学对象的分析,教学媒体的选择,课堂教学结构类型的选择与组合等,都将在教学过程中得到体现。

⑼ 在新课程标准的实施下,数学教学设计应该遵循哪些基本原则呢

一、 全面落实课程目标 所谓“全”的问题,就是要全面落实各类小学数学课程目标。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。为此,结合国家课程改革的总体要求,结合自身学科特点,确立了“知识与技能”“数学思考”“问题解决”“情感与态度”四维目标。但是这一四维目标,属于引导课程设计和教学设计的总体目标,而并非是引导每一节课设计的具体教学目标。在具体的教学设计过程中,我们应该参照上述目标,进一步把它们进行分解、细化,从而生成具有更强教学导向作用的微观目标。著名教育心理学家罗伯特·加涅历经40年的研究,提出了一个得到普遍公认的学习分类方法,即学习结果可以分为言语信息、智力技能(又细分为辨别、概念、规则、高级规则由低到高的四类)、认知策略、动作技能、态度五类。根据这一分类标准,结合我国《数学课程标准》中的目标分类,我们就可以把初中数学中具体的教学目标划分为如下几类:(1)知识。如数学标识符号、有关数学的故事、趣闻等;(2)智力技能。包括辨别能力、概念、一般规则、高级规则等;(3)动作技能。包括各种动手操作能力;(4)思维方法。既包括一般的学习方法,又包括具体的解题方法;(5)情感与态度。包括兴趣、好奇心、自信息、自豪感等各种情感、态度、价值观。 有了这样一个参照框架,教师在实际设计每一堂课时,就可以作为对照,一一澄清究竟有多少类教学目标需要落实,自己忽视乃至遗漏了哪一方面的目标。例如,参考这一框架,就可以避免数学教学中容易忽视的动作技能的培养问题。同时,在全面落实课程目标的过程中,需要注意某些类型目标的隐含性实质。例如,从可预见性角度划分,情感与态度目标可分为预设性目标和非预设性目标两类。所谓预设性目标,是指在备课时预先列出的目标。例如,讲授圆周率时,教师要考虑介绍中国古代的数学文明,激发学生的爱国主义情感;要介绍圆周率的用途,培养学生的数学价值意识。所谓非预设性目标,是指在教学准备阶段不能确切设定,但是在教学过程中只要出现时机就应该加以落实的目标。譬如,在教学过程中,某位学生提出了新颖的问题,这就出现了引发学生求知欲的时机;某位学生出色地回答了问题,这时就出现了培养学生学习自信心的目标。在数学教学中,每一堂课上不一定都有预设性的情感与态度目标,但是必然有非预设性的情感与态度目标。因为每一堂课上都有师生之间的互动,而师生之间的每一次互动,都是对学生进行情感与态度教育的时机。非预设性的情感与态度目标通常是隐含性的,需要随时注意。类似地,思维方法通常也不是独立的,它需要以具体的数学内容为载体,与具体的内容学习结合在一起来训练。拆数的方法,需要与某个数相结合;面积的巧算,需要以某道具体的面积计算题为依托。教师只有从整体把握住具体教学目标究竟有几类,而且对于一些隐含性的目标做到心中有数,在设计自己的教学时才不至于遗漏目标。二、确保学生的学习到位 所谓“深”的问题,就是要考虑数学内容的学习达到什么程度才算到位。前面提到,数学学习有不同的类型,有知识学习,有概念学习,有规则学习,也有问题解决,但每一类学习都有其理想的终点。根据心理学的研究结果,数学知识学习的理想终点是在需要时能够回忆起来,概念、规则、问题解决等数学技能的学习一般以解决生活中的真实数学问题为终点,而思维方法的学习以能够自觉、熟练地运用乃至创造为终点。数学学习不能达到其理想终点,就意味着学习不到位,没有完成课程或教学的目标。 例如,在“有理数、无理数”概念的教学 中,如果学生仅仅能够辨别哪些数是有理数、哪些数是无理数,这并不代表学 习任务已经完成,而如果能够举出无理数概念在现实生活中的运用实 例、设计运用这两个概念的情境,则 标志着学习达到了更高的水平。教师要想准确地判断自己的教 学、学生的学习是否到位,更为有效 地引导学生的学习,必须澄清每类学习从浅入深的层次问题,学会数学学习的层级分析。近期,美国学者完成了对布鲁姆《教育目标分类学》(认知领域)的修订,把认知领域的学习从认知过程维度分为“记忆”“理解”“运用”“分析”“评价”“创造”由低到高的六介层次,为数学教师判定教学的深度提供了很好的评价标准。 三、科学运用教学方法 要求所采用的教学方法必须建立在科学的学习和教学心理学的基础上,以最少“付出”达到既定目标。本质上,数学教学包括学生的“学”与教师的“教”两个方面。在这其中,“学”为根本,“教”为手段。数学教学的根本目的是促进学生的数学学习和身心发展,因此它必须以学生的学习为基础。从这一意义上讲,良好的教学设计必须把握学生的数学学习心理规律。例如,小学数学中的概念既有具体概念,又有定义性概念。现代学习心理学研究表明,前一类概念适合采用概念形成(发现式)的学习方式,后一种概念适合采用概念同化(讲授式)的学习方式。教师如果明确了这一点,设计相应的教学方法和程序,就可以较好地完成教学;否则,就可能出现事倍功半的结果。数学教学设计还必须尊重学生的认知发展水平和已有知识经验。不同年龄阶段的小学生,认知发展水平也存在一定的差异。七年级学生的认知具有具体形象性的特点,所以在数学教学中必须注重使用直观教具,而不能仅凭抽象的数学符号、数量关系的描述和推理来进行教学。而在九年级数学教学中,采用适合于低年级学生的简单、有趣的教学情境,则可能让他们感觉“搞笑”。 当前,国际数学教育领域普遍强调在数学教学中做好教学分析这一环节。这里的教学分析,包含学生分析、学习任务分析、学习情境分析。分析学生的目的就是澄清他们的学习需求、认知特点、知识水平、学习起点,为教学内容、策略的选择提供依据;分析学习任务的目的,就是要澄清学习的层级和条件,为教学步骤的展开和推进奠定基础;分析学习情境的目的,是为了澄清影响学习的情境因素,为教学环境的布置、教学情境的创设提供参照。所有这些做法,都值得小学数学教师学习、借鉴,并藉此来提升自身教学设计的科学性。四、强化新素材、新方法的运用 所谓“新”的问题,就是要求教学设计时考虑一些新的教育理念、教学方法、教学内容的运用,使教学不断推陈出新。新颖、新奇的素材的运用,可以更好地吸引学生的注意力,提升数学学习的效果。现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。在数学教学设计中,教师应充分考虑计算器、计算机对数学学习内容和方式所产生的积极推动作用。教师习惯于运用互联网,可以大力开发并向学生提供更为丰富的学习资源;采取多媒体课件的教学呈现方式,既可以节省课上用于板演的时间,又可以充分利用声、光、电、动画等直观技术,吸引学生的注意力,使学生把更多的精力投入到学习内容中。在教学设计中求新,还意味教学方式的不断变化。例如,以“活动式”开头是一种能够较好引导学生学习的设计,但是如果教师频繁使用,也会导致学生逐渐对这种开头失去兴趣,从而影响学习效果。如果教师在教学中轮换使用“直接导入法”“趣事导入法”“问题导入法”“游戏导入法”等多种导入方式,课堂教学就会变得丰富多彩,学生的学习兴趣就会更加浓厚。五、关注真实的生活问题 在教学设计时要尽量考虑选取一些来自于真实世界的真实问题、情境、素材,尽量避免采用一些抽象的、虚拟的教学内容和形式。《数学课程标准》强调“人人学有价值的数学”。这里的“有价值”,不仅具有“对学生进一步学习有用”的涵义,更为重要的是强调“对学生从事任何事都有用”。突出数学与现实生活问题的关联,是数学教学设计必须遵循的一个基本原则。毕竟,数学来源于生活,最终还要回到生活,服务于生活。而且,与真实生活问题相关联的数学,也最能激发学生的学习兴趣,培养学生的实用技能。在教学设计过程中,教师可以通过两个途径来关注真实生活的问题。采用这些教学设计方式,不仅可以让学生切实感受到数学与自己的生活息息相关,感受到数学学习的价值,而且可以感受到自己的本领在增强,享受到数学学习带来的快乐。

⑽ 小学数学的教学原则

小学数学的教学原则是一门学科的教学原则,与教育学中所谈的教学原则是特殊与一般的关系,它既符合普遍教育中的教学原则,更体现了小学数学学科的特点。概括的讲,小学数学有以下六条主要的教学原则:

一、传授数学知识和培养数学能力相结合的原则
小学生的数学能力一般是指计算能力、初步的逻辑思维能力、初步的空间观念以及运用所学知识解决简单实际问题的能力。知识是能力的基础,各种数学能力是数学知识学习过程中逐步形成和发展的。同时,知识的掌握又受能力的制约,已形成数学能力反过来决定着真实掌握的程度,两者是相辅相成,相互作用的。

二、理论与实际相结合的原则
应用的广泛性是数学的三大特性之一。把数学教学与实际生活联系起来,讲来源、讲用途,让学生感到生活中处处有数学。数学是一门看得见、摸得着、用得上的科学。这样,可以激发学生的学习兴趣,帮助学生掌握数学基础知识,提高分析问题和解决简单实际问题的能力,培养数学应用的意识。

三、具体与抽象相结合的原则
列宁指出,人的认识是从生动的直观到抽象的思维,并从抽象的思维到实践,这就是认识真理、认识客观实践辩证途径。数学的一门很抽象的学科,要解决数学的高度抽象性与小学生思维具体形象之间的矛盾,重要的是采用直观教学。

四、严谨性与可接受性相结合的原则
严谨性是数学学科的一大特点,由于逻辑的严谨而导出结论的确定性。可接受性是针对学生而定的,指的是一切教学内容要符合小学生身心发展水平,要循序渐进,难易适度,便于学生接受。在数学教学中,既要注意数学本身的严谨性,又要符合小学生的接受能力,把两者密切地结合起来考虑,才能有效的促进学生掌握数学知识,提高学生的数学能力。

五、理解和巩固相结合的原则
数学既是基础课、文化课,又是工具课。要使小学生在较短的时间内,掌握像数学那样相当抽象的知识,必须要有一个反复学习的过程。在正确理解的基础上巩固,在巩固过程中加深理解。知识的理解和巩固又促进数学技能的形成和数学能力的发展。

六、教师的主导作用与学生的主体性相结合的原则
教与学是教学过程中的一对主要矛盾,如能把两者辩证的统一起来,将是实施素质教育的根本。在教学中,教师的主导作用越是充分发挥,就越能调动学生学习的主动性和积极性;学生的主动性越是充分发挥,就越能体现教师潜在的主导作用,两者密切的结合起来,是不断提高课堂教学效率的根本保证。

总之,以上六个小学数学教学原则是紧密联系的,不要孤立的发挥某个原则的作用。只有全面理解教学原则的整个体系,灵活的运用各教学原则,才能使数学教学达到预期的效果。

阅读全文

与数学教学的基本原则相关的资料

热点内容
北京高中作文耐心 浏览:59
变作文600字初中 浏览:660
2011台州中考语文 浏览:250
识字一的教案 浏览:85
语文作业本凡卡答案 浏览:619
300书信作文大全 浏览:227
苏教版五年级语文下册补充成语ppt 浏览:891
爱的方式作文开头结尾 浏览:694
端午节的作文600字初中 浏览:70
3年级上册语文作业本答案 浏览:265
高考语文与小学的联系 浏览:965
2015北京语文中考答案 浏览:979
双分点地步法教学 浏览:714
小学二年级作文辅导课 浏览:693
关于成功条件的作文素材 浏览:848
建军节作文的结尾 浏览:88
五年级下册语文mp3在线收听 浏览:696
ie教案6 浏览:907
三年级语文培优补差计划 浏览:679
二胡独奏一枝花教学 浏览:525