1. 如何写课程标准初中数学案例分析
初中数学教学典型案例分析
我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:
1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。
首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合
案例1:《勾股定理》一课的课堂教学
第一个环节:探索勾股定理的教学
师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现?
A的面积
B的面积
C的面积
图1
图2
图3
图4
生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。
这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。
第二个环节:证明勾股定理的教学
教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力 (试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。
学生展示略
通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。
第三个环节:运用勾股定理的教学
师(出示右图):右图是由两个正方形
组成的图形,能否剪拼为一个面积不变的新
的正方形,若能,看谁剪的次数最少。
生(出示右图):可以剪拼成一个面积
不变的新的正方形,设原来的两个正方形的
边长分别是a、b,那么它们的面积和就是
a2+ b2,由于面积不变,所以新正方形的面积
应该是a2+ b2,所以只要是能剪出两个以a、b
为直角边的直角三角形,把它们重新拼成一个
边长为 a2+ b2 的正方形就行了。
问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。
第四个环节:挖掘勾股定理文化价值
师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。
新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。
2.课堂教学过程中的预设和生成的动态调整
案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:
例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”处应放 个物体b?
a
a
b
c
图① 图②
a
c
?
图③
通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。
我讲解的设计思路是这样的:
一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模):
图①:2a=c+b. 图②: a+b=c.
因此,2a=(a+b)+b.
可得:a=2b, c=3b .
所以,a+c = 5b.
答案应填5.
我自以为思维严密,有根有据。然而,在让学生展示自己的想法时,却出乎我的意料。
学生1这样思考的:
假设b=1,a=2,c=3.所以,a+c = 5,答案应填5.
学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上。面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果。因此,我立刻放弃了准备好的讲解方案,以学生思维的结果为起点,进行调整。
我先对学生1的方法进行积极地点评,肯定了这种思维方式在探索问题中的积极作用,当那几个同样做法的学生自信心溢于言表时,我随后提出这样一个问题:
“你怎么想到假设b=1, a=2, c=3?a、b、c是不是可以假设为任意的三个数?”
有的学生不假思索,马上回答:“可以是任意的三个数。”也有的学生持否定意见,大多数将信将疑,全体学生被这个问题吊足了胃口,我趁机点拨:
“验证一下吧。”
全班学生立刻开始思考,验证,大约有3分钟的时间,学生们开始回答这个问题:
“b=2,a=3,c=4时不行,不能满足图①、图②中的数量关系。”
“b=2,a=4,c=6时可以。结果也该填5.”
“b=3,a=6,c=9时可以,结果也一样。”
“b=4,a=8,c=12时可以,结果也一样。”
“我发现,只要a是b的2倍,c是b的3倍就能满足图①、图②中的数量关系,结果就一定是5.”
这时,学生的思维已经由特殊上升到一般了,也就是说在这个过程中,学生的归纳推理得到了训练,对特殊值法也有了更深的体会,用字母表示发现的规律,进而得到a=2b,c=3b .所以,a+c = 5b. 答案应填5.
我的目的还没有达到,继续抛出问题:
“我们列举了好多数据,发现了这个结论,你还能从图①、图②中的数量关系本身,寻找更简明的方法吗?”学生又陷入深深地思考中,当我巡视各小组中出现了“图①:2a=c+b. 图②: a+b=c.”时,我知道,学生的思维快与严密的逻辑推理接轨了。
我们是不是都有这样的感受,课堂教学设计兼具“现实性”与“可能性”的特征,这意味着课堂教学设计方案与教学实施过程的展开之间不是“建筑图纸”和“施工过程”的关系,即课堂教学过程不是简单地执行教学设计方案的过程。
在课堂教学展开之初,我们可能先选取一个起点切入教学过程,但随着教学的展开和师生之间、生生之间的多向互动,就会不断形成多个基于不同学生发展状态和教学推进过程的教学“新起点”。因此课堂教学设计的起点并不是唯一的,而是多元的;不是确定不变的,而是预设中生成的;不是按预设展开僵硬不变的,而是在动态中调整的。
3.一节数学习题课的思考
案例3:一位教师的习题课,内容是“特殊四边形”。
该教师设计了如下习题:
A
O
F
E
B
H
G
C
题1 (例题)顺次连接四边形各边的中点,所得的四边形是怎样的四边形?并证明你的结论。
题2 如右图所示,△ABC中,中线BE、CF
交于O, G、H分别是BO、CO的中点。
(1) 求证:FG∥EH;
(2) 求证:OF=CH.
O
F
A
E
C
B
D
题3 (拓展练习)当原四边形具有什么条件时,其中点四边形为矩形、菱形、正方形?
题4 (课外作业)如右图所示,
DE是△ABC的中位线,AF是边
BC上的中线,DE、AF相交于点O.
(1)求证:AF与DE互相平分;
(2)当△ABC具有什么条件时,AF = DE。
(3)当△ABC具有什么条件时,AF⊥DE。
F
G
E
H
D
C
B
A
教师先让学生思考第一题(例题)。教师引导学生画图、观察后,进入证明教学。
师:如图,由条件E、F、G、H
是各边的中点,可联想到三角形中位
线定理,所以连接BD,可得EH、
FG都平行且等于BD,所以EH平行
且等于FG,所以四边形EFGH是平行四边形,下面,请同学们写出证明过程。
只经过五六分钟,证明过程的教学就“顺利”完成了,学生也觉得不难。但让学生做题2,只有几个学生会做。题3对学生的困难更大,有的模仿例题,画图观察,但却得不到矩形等特殊的四边形;有的先画矩形,但矩形的顶点却不是原四边形各边的中点。
评课:本课习题的选择设计比较好,涵盖了三角形中位线定理及特殊四边形的性质与判定等数学知识。运用的主要方法有:(1)通过画图(实验)、观察、猜想、证明等活动,研究数学;(2)沟通条件与结论的联系,实现转化,添加辅助线;(3)由于习题具备了一定的开放性、解法的多样性,因此思维也要具有一定的深广度。
为什么学生仍然不会解题呢?学生基础较差是一个原因,在教学上有没有原因?我个人感觉,主要存在这样三个问题:
(1)学生思维没有形成。教师只讲怎么做,没有讲为什么这么做。教师把证明思路都说了出来,没有引导学生如何去分析,剥夺了学生思维空间;
(2)缺少数学思想、方法的归纳,没有揭示数学的本质。出现讲了这道题会做,换一道题不会做的状况;
(3)题3是动态的条件开放题,相对于题1是逆向思维,思维要求高,学生难把握,教师缺少必要的指导与点拨。
修正:根据上述分析,题1的教学设计可做如下改进:
首先,对于开始例题证明的教学,提出“序列化”思考题:
(1)平行四边形有哪些判定方法?
(2)本题能否直接证明EF∥FG , EH=FG? 在不能直接证明的情况下,通常考虑间接证明,即借助第三条线段分别把EH和FG的位置关系(平行)和数量关系联系起来,分析一下,那条线段具有这样的作用?
(3)由E、F、G、H是各边的中点,你能联想到什么数学知识?
(4)图中有没有现成的三角形及其中位线?如何构造?
设计意图:上述问题(1)激活知识;问题(2)暗示辅助线添加的必要性,渗透间接解决问题的思想方法;问题(3)、(4)引导学生发现辅助线的具体做法。
其次,证明完成后,教师可引导归纳:
我们把四边形ABCD称为原四边形,四边形EFGH称为中点四边形,得到结论:任意四边形的中点四边形是平行四边形;辅助线沟通了条件与结论的联系,实现了转化。原四边形的一条对角线沟通了中点四边形一组对边的位置和数量关系。这种沟通来源于原四边形的对角线同时又是以中点四边形的边为中位线的两个三角形的公共边,由此可感受到,起到这种沟通作用的往往是图形中的公共元素,因此,在证明中一定要关注这种公共元素。
然后,增设“过渡题”:原四边形具备什么条件时,其中点四边形为矩形?教师可点拨思考:
怎样的平行四边形是矩形?结合本题特点,你选择哪种方法?考虑一个直角,即中点四边形一组邻边的位置关系。一组邻边位置和数量关系的变化,原四边形两条对角线的位置和数量关系也随之变化。
根据修正后的教学设计换个班重上这节课,这是效果明显,大部分学生获得了解题的成功,几个题都出现了不同的证法。
启示:习题课教学,例题教学是关键。例题与习题的关系是纲目关系,纲举则目张。在例题教学中,教师要指导学生学会思维,揭示数学思想,归纳解题方法策略。可以尝试以下方法:
(1)激活、检索与题相关的数学知识。知识的激活、检索缘于题目信息,如由条件联想知识,由结论联系知识。知识的激活和检索标志着思维开始运作;
(2)在思维的障碍处启迪思维。思维源于问题,数学思维是隐性的心理活动,教师要设法采取一定的形式,凸显思维过程,如:设计相关的思考问题,分解题设障碍,启迪学生有效思维。
(3)及时归纳思想方法与解题策略。从方法论的角度考虑,数学习题教学,意义不在习题本身,数学思想方法、策略才是数学本质,习题仅是学习方法策略的载体,因此,方法策略的总结是很有必要的。题1的归纳总结使题2迎刃而解,题2是将题1的凸四边形ABCD变为凹四边形ABOC,两题的实质是一样的。学生在解题3时,试图模仿题1,这是解题策略问题。题1条件确定,可以通过画图、观察发现,题3必须通过推理发现后才可画出图形。
4. 注意课堂提问的艺术
案例1:一堂公开课——“相似三角形的性质”,为了了解学生对相似三角形判定的掌握情况,提出两个问题:
(1) 什么叫相似三角形?
(2) 相似三角形有哪几种判定方法?
听了学生流利、圆满的回答,教师满意地开始了新课教学。老师们对此有何评价?
C
B
A
事实上学生回答的只是一些浅层次记忆性知识,并没有表明他们是否真正理解。可以将提问这样设计:
如图,在△ABC和△A?B?C?中,
(1)已知∠A=∠A?,补充一个合适的
C?
A?
B?
条件 ,使△ABC∽△A?B?C?;
(2)已知AB/A?B?=BC/B?C?;补充一个合适的
条件 ,使△ABC∽△A?B?C?.
回答这样的问题,仅靠死记硬背是不行的,只有在真正掌握了相似三角形判定的基础上才能正确回答。这样的提问能起到反思的作用,学生的思维被激活,教学的有效性能够提高。
案例2:一堂讲菱形的判定定理(是讲对角线互相垂直平分的四边形是菱形)的课,教师画出图形后,有一段对话:
师:四边形ABCD中,AC与BD互相垂直平分吗?
B
C
A
D
生:是!
师:你怎么知道?
生:这是已知条件!
师:那么四边形ABCD是菱形吗?
生:是的!
师:能通过证三角形全等来证明结论吗?
生:能!
老师们感觉怎样?实际上,老师已经指明用全等三角形证明四边形的边相等,学生几乎不怎么思考就开始证明了,所谓的“导学”实质成了变相的“灌输”。虽从表面上看似热闹活跃,实则流于形式,无益于学生积极思维。可以这样修正一下提问的设计:
(1)菱形的判定已学过哪几种方法?(1.一组邻边相等的平行四边形是菱形;2.四边相等的四边形是菱形)
(2)两种方法都可以吗?证明边相等有什么方法?(1.全等三角形的性质;2.线段垂直平分线的性质)
(3)选择哪种方法更简捷?
案例3:“一元一次方程”的教学片段:
师:如何解方程3x-3=-6(x-1)?
生1:老师,我还没有开始计算,就看出来了,x =1.
师:光看不行,要按要求算出来才算对。
生2:先两边同时除以3,再……(被老师打断了)
师:你的想法是对的,但以后要注意,刚学新知识时,记住一定要按课本的格式和要求来解,这样才能打好基础。
老师们感觉怎样?这位教师提问时,把学生新颖的回答中途打断,只满足单一的标准答案,一味强调机械套用解题的一把步骤和“通法”。殊不知,这两名学生的回答的确富有创造性,可惜,这种偶尔闪现的创造性思维的火花不仅没有被呵护,反而被教师“标准的格式”轻易否定而窒息扼杀了。其实,学生的回答即使是错的,教师也要耐心倾听,并给与激励性评析,这样既可以帮助学生纠正错误认识,又可以激励学生积极思考,激发学生的求异思维,从而培养学生思维能力。
有的老师提问后留给学生思考时间过短,学生没有时间深入思考,结果问而不答或者答非所问;有的老师提问面过窄,多数学生成了陪衬,被冷落一旁,长期下去,被冷落的学生逐渐对提问失去兴趣,上课也不再听老师的,对学习失去动力。
关于课堂提问,我感觉要注意以下问题:
(1)提问要关注全体学生。提问内容设计要由易到难,由浅入深,要富有层次性,不同的问题要提问不同层次的学生;
(2)提问要有思考的价值,课堂提问要选择一个“最佳的智能高度”进行设问,是大多数学生“跳一跳,够得着”;
(3)提问的形式和方法要灵活多样。注意提问的角度转换,引导学生经历尝试、概括的过程,充分披露灵性,展示个性,让学生得到的是自己探究的成果,体验的是成功的快乐,使“冰冷的,无言的”数学知识通过“过程”变成“火热的思考”。
2. 幼儿园语言领域教学方法
有句话说得好,教育是一颗心撼动另一颗心的事业。在幼儿语言教学活动中,离不开循循善诱,更要遵循“因材施教”的教学法则,如果只顾“齐步走”、搞“一刀切”,那么就会伤害到许多幼小的心灵:进步快的“吃不饱”,进步慢的则跟不上。尤其对一些“后进”的幼儿来说,由于教师的一时疏忽,教学策略上的“粗枝大叶”,说不定,从此就会了断了孩子语言学习的兴趣与愿望。举一个例子:当每次组织孩子听录音故事的时候,老师经常这样边做动作边说:“插上电源,再按键,好听的故事就出来。教师的多次重复,孩子们就自然而然会说这句话了,不会再说:“老师,这个,这个。”从而在潜移默化中培养了幼儿对语言的运用能力。
走向生活,寻找语言学习的活水源头
语言,源于生活,源于实践。语言是人们开展思维活动、进行交流的工具。人们学习各种知识、技能,积累各种精神财富都主要利用语言来完成。为了引领孩子走向生活,在天广地阔的生活空间里,寻找学习的活水源头,就需要教师适时引导孩子的个性化语言的发展,饶有兴趣地去学习语言,热爱语言。如每周可举行一次活动,活动形式应丰富多样,有:新闻角、口述稿、绘画日记等,人人参与、个个发言。这是孩子们“亮相”的大舞台,也是语言训练的极好机会,孩子们兴高采烈地把自己在一周的所“得”,全心全意地捧到同伴和老师的面前,这样,每一次活动,就显得特别生动有趣,因为,这一天是孩子捕捉“语言”的好日子。通过交流,既提高了幼儿的口语表达能力,又潜意识地培养了幼儿关心周围事物变化的习惯及敏锐的观察能力。孩子们已不把学习看作负担,而处于一种主动探求知识的境地。因为,这样的学习,使他们轻松愉悦,乐趣无穷。
、兴趣是孩子学习的原动力
我们也应尝试通过丰富多彩的游戏活动,扩展幼儿的经验,从而提供促进语言发展的条件。因此,在平时的教学中,处处采用不同的活动方式,为孩子提供一定的游戏材料,模拟和创设特定的情景,使幼儿能在游戏中触景生情,边玩边说,提高语言表达能力。
3. 等边三角形的判定方法
利用三边相等或者三个角相等(都等于60度),即可判定!
4. 怎样写平行四边形的判定教学设计
目标设计:
知识目标:
1、在对平行四边形认识的基础上,探索平行四边形的判定方法。
2、通过逆命题的猜想、操作验证、逻辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法。
能力目标:
能综合运用平行四边形的判定方法和性质解决一些简单的问题。
德育目标:
发展学生的合情推理能力,进一步培养学生的逻辑推理能力,规范推理的书写格式。
重点、难点:
重点:探究并掌握平行四边形的判定方法,能综合运用平行四边形的判定解决问题。
难点:理解合情推理和逻辑推理的融合,书写规范的推理过程。
教学方法:探究式
学习方法:自主学习、合作交流
教具准备:三角板、圆规、木条(两个长的相等,两个短的相等)、多媒体课件
方法设计:
导入新课
1、创设问题情境
有一块平行四边形的玻璃块,假如不小心打碎了,聪明的师傅拿着细绳很快将原来的平行四边形画出来了,你知道他用的是什么方法吗?带着这个问题,我们进入今天的探索。
A
B
C
板书课题:平行四边形的判定(一)
交待本节课的学习目标。
2、回忆旧知
(1)平行四边形的定义?
(2)平行四边形具有哪些性质?
(3)互逆命题的定义?
3、提出问题,引入新知
怎样判定一个四边形是平行四边形呢?当然,我们可以根据定义:两组对边分别平行的四边形是平行四边形来判定。还有其他的判定方法吗?本节课我们共同研究这个问题。
探究新知
一、自主学习
(1)学生自主学习本节内容,整体感知,圈点出难点疑点。
(2)大胆猜想:
你能写出“平行四边形的两组对边分别相等”的逆命题吗?猜想这个命题是真命题还是假命题?
活动结果:根据上一章所学习的逆命题定义,学生独立写出,进行大胆猜想。
二、合作交流,实验操作(多媒体课件演示)
请同学们拿出自己准备好的四段木条,四个同学一组活动,观察思考。
问题:
(一)、这四段木条能拼成一个平行四边形吗?
(二)、转动这个四边形,改变它的形状,它一直是一个平行四边形吗?
(三)、由此你可以得到什么结论?
活动:学生动手操作,认真观察,精心交流,发表见解,得到结论,教师可以参与讨论,指导点拨。
三、展示反馈
抽小组代表将上述讨论结果展示给大家,实际操作,不足之处其他同学补充,教师多媒体演示,及时点拨,组织好学生。
学生明确:两组对边分别相等的四边形是平行四边形。
四、逻辑推理
你能用所学的知识证明上述的猜想成立吗?
已知:如图,在平行四边形ABCD中,AD=BC,AB=CD。
求证:四边形ABCD是平行四边形。
抽学生代表展示:
证明:连结AC
∵AD=BC,AB=CD,AC=AC
∴△ABC≌△CDA(SSS)
∠1=∠2,∠3=∠4(全等三角形的性质)
∴AB∥CD,AD∥BC(内错角相等,两直线平行)
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)
由此我们得出平行四边形除定义之外,判定平行四边形的方法一:
两组对边分别平行的四边形是平行四边形。
符号表示:
在四边形ABCD中,
∵AD∥BC,AB∥DC,
∴四边形ABCD是平行四边形。
练习设计:
1、已知: ABCD中,E,F分别是AB,CD的中点。
求证:四边形AECF是平行四边形。
2、已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。
求证:四边形BFDE是平行四边形
课堂小结:
学生总结:本节课的收获,判定平行四边形的方法:两组对边分别相等的四边形是平行四边形。
教师总结:探索平行四边形的判定方法的一般思路:逆命题猜想——操作验证——逻辑推理,提高自己的逻辑推理论证能力。
课后作业:课后练习1、2。
设计说明:
本节课在引入的环节上,采用复习引入的方式。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整个过程,培养学生的探究能力,发展学生的合情推理能力。
数学的学习要重视学习方法的指导。本节课通过由浅入深的练习和灵活的变式,引导学生善于抓住图形的基本特征和题目的内在联系,达到触类旁通的效果。
5. 学习方法
▼学习成长曲线理论
人要想努力学习获得成果,首先需要了解学习成长的路径原理是怎么样的。 很多人错以为,自己的时间精力投入可以换来直接的成果,以为努力与时间是成正比的。 老师之所以能教人, 就在于他在这方面不光投入了时间学习, 还有多项实践经验的累积, 和不断的试错矫正的过程。 而一般的学员,只看到了老师呈现出来的教学内容,却忽略了老师也是经历过大量的训练,才有现在的专业度。 如果学员在学完理论后,没有进行大量实践,效果自然不明显。
▼学习金字塔
理论与实践相结合,才能真正掌握一门知识,并转化为技能。 听讲、阅读这两种学习方式,是绝大部分不会学习的人的学习方式。在他们的经验里,认为学习不就是听老师讲, 自己再看看书就应该学会的吗? 只听和阅读肯定是不够的,最基本的是需要做笔记,复习,复盘,和他人交流,自己再进行实践——也就是后面说 到的『刻意练习』 。
▼掌握刻意练习原则
简单说,你不是不努力,你是不会努力,是无效努力。 比如,很多人的学习方法就是把书、资料和课程过一遍,然后就再也没有打开过,没有做笔记、总结的习惯。 ? 再如,学霸为什么能称之为学霸,某种程度就是他刷的习题比别人多。各种类型的题目、解法都做过了。 正所谓“读书破万卷,下笔如有神” ,你已经把书读透读厚,深度理解,那运用起来自然得心应
▼遗忘曲线
遗忘曲线,是由德国心理学家艾宾浩斯研究发现,描述了人类大脑对新事物遗忘的规律。 人们可以从遗忘曲线中掌握遗忘规律并加以利用,从而提升自我记忆能力。 学完一个东西,需要经常复习和反复使用,你才能记得
▼时间管理-番茄工作法
番茄工作法是一种能让你在 25 分钟内高效专注的时间统计方法, 番茄钟响铃, 如果还处于高效专注的状态下, 继续下一个番茄钟。如果累了就休息 3~5 分钟,然后再继续,直到把工作完成,番茄工作法可以搭配手机辅助软件更好进行。
6. 问题教学法的基本步骤
问题教学法的教学步骤一般是:()提出疑问,启发思考。(2)边读边议,讨论交流。(3)解决疑难。(4)练习巩固。问题教学法的教学重点比较明确,教学内容比较集中,并通过问题讨论的方式组织教学,有助于激发学生的学习兴趣和培养他们的阅读分析能力。
“问题教学法”的基本结构与实施我们可概括为“三环”、“六步”。
“三环”为: 第一环节:创造问题情境,发现、提出问题,并使问题定向,为“生成”问题。第二环节:对生成的定向问题,进行自主探究(个体与集体合作学习),分析、解决问题,为“探索”问题。第三环节:对探索的问题及时反馈,在验证中得以解决,并进一步拓展问题,为“发展”问题。
“六步”为: 第一步是创设问题情境;使学生发现并提出问题。第二步引导学生对提出的问题,结合教学目的,明确要解决的主要问题,即问题定向。第三步学生自主探究,分析问题,提出假设、猜想,设计解决问题方案。第四步对假设方案、推论、尝试解决问题。要允许学生犯错误,这往往是正确的先导。第五步是对解决的问题及时反馈;进行科学检验,使问题解决,并掌握科学方法。第六步是对解决的问题再质疑,使问题得以拓展与延伸,使学习的知识系统化,又为探求新知奠定基础。
以上“三环”、“六步”是“问题教学法”的基本结构与操作程序,在实践中应结合学科特点与教学实际加以灵活运用。
7. 学习方法
经验一:
1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间,例如一小时内完成这份练习、八点以前做完那份测试等等,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,现在四十分钟就完成了。
2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。
3、不要整个晚上都复习同一门功课。我以前也曾经常用一个晚上来看数学或物理,实践证明,这样做非但容易疲劳,而且效果也很差。后来我在每晚安排复习两三门功课,情况要好多了。
除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。
经验二:
学习效率这东西,我也曾和很多人谈起过。我们经常看到这样的情况:某同学学习极其用功,在学校学,回家也学,不时还熬熬夜,题做得数不胜数,但成绩却总上不去其实面对这样的情况,我也是十分着急的,本来,有付出就应该有回报,而且,付出的多就应该回报很多,这是天经地义的事。但实际的情况却并非如此,这里边就存在一个效率的问题。效率指什么呢?好比学一样东西,有人练十次就会了,而有人则需练一百次,这其中就存在一个效率的问题。
如何提高学习效率呢?我认为最重要的一条就是劳逸结合。学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。那么上课时的听课效率如何提高呢?以我的经历来看,课前要有一定的预习,这是必要的,不过我的预习比较粗略,无非是走马观花地看一下课本,这样课本上讲的内容、重点大致在心里有个谱了,听起课来就比较有针对性。预习时,我们不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的,但就象我以前一个老师讲的,任何人也无法集中精力一节课,就是说,连续四十多分钟集中精神不走神,是不太可能的,所以上课期间也有一个时间分配的问题,老师讲有些很熟悉的东西时,可以适当地放松一下。另外,记笔记有时也会妨碍课堂听课效率,有时一节课就忙着抄笔记了,这样做,有时会忽略一些很重要的东西,但这并不等于说可以不抄笔记,不抄笔记是不行的,人人都会遗忘,有了笔记,复习时才有基础,有时老师讲得很多,在黑板上记得也很多,但并不需要全记,书上有的东西当然不要记,要记一些书上没有的定理定律,典型例题与典型解法,这些才是真正有价值去记的东西。否则见啥记啥,势必影响课上听课的效率,得不偿失。
作题的效率如何提高呢?最重要的是选"好题",千万不能见题就作,不分青红皂白,那样的话往往会事倍功半。题都是围绕着知识点进行的,而且很多题是相当类似的,首先选择想要得到强化的知识点,然后围绕这个知识点来选择题目,题并不需要多,类似的题只要一个就足够,选好题后就可以认真地去做了。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。
评:夏宇同学对于听课和做题的建议,实际上反应了提高学习效率的一个重要方法--"把劲儿使在刀刃上",即合理分配时间,听课、记笔记应抓住重点,做习题应抓住典型,这就是学习中的"事半功倍"。
经验三:
学习效率是决定学习成绩的重要因素。那么,我们如何提高自己学习效率呢?
第一点,要自信。很多的科学研究都证明,人的潜力是很大的,但大多数人并没有有效地开发这种潜力,这其中,人的自信力是很重要的一个方面。无论何时何地,你做任何事情,有了这种自信力,你就有了一种必胜的信念,而且能使你很快就摆脱失败的阴影。相反,一个人如果失掉了自信,那他就会一事无成,而且很容易陷入永远的自卑之中。
提高学习效率的另一个重要的手段是学会用心。学习的过程,应当是用脑思考的过程,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,真正的关键还在于用脑子去想。举一个很浅显的例子,比如说记单词,如果你只是随意的浏览或漫无目的地抄写,也许要很多遍才能记住,而且不容易记牢,而如果你能充分发挥自己的想象力,运用联想的方法去记忆,往往可以记得很快,而且不容易遗忘。现在很多书上介绍的英语单词快速记忆的方法,也都是强调用脑筋联想的作用。可见,如果能做7到集中精力,发挥脑的潜力,一定可以大大提高学习的效果。
另一个影响到学习效率的重要因素是人的情绪。我想,每个人都曾经有过这样的体会,如果某一天,自己的精神饱满而且情绪高涨,那样在学习一样东西时就会感到很轻松,学的也很快,其实这正是我们的学习效率高的时候。因此,保持自我情绪的良好是十分重要的。我们在日常生活中,应当有较为开朗的心境,不要过多地去想那些不顺心的事,而且我们要以一种热情向上的乐观生活态度去对待周围的人和事,因为这样无论对别人还是对自己都是很有好处的。这样,我们就能在自己的周围营造一个十分轻松的氛围,学习起来也就感到格外的有精神。
经验四:
很多学生看上去很用功,可成绩总是不理想。原因之一是,学习效率太低。同样的时间内,只能掌握别人学到知识的一半,这样怎么能学好?学习要讲究效率,提高效率,途径大致有以下几点:
一、每天保证8小时睡眠。
晚上不要熬夜,定时就寝。中午坚持午睡。充足的睡眠、饱满的精神是提高效率的基本要求。
二、学习时要全神贯注。
玩的时候痛快玩,学的时候认真学。一天到晚伏案苦读,不是良策。学习到一定程度就得休息、补充能量。学习之余,一定要注意休息。但学习时,一定要全身心地投入,手脑并用。我学习的时侯常有陶渊明的"虽处闹市,而无车马喧嚣"的境界,只有我的手和脑与课本交流。
三、坚持体育锻炼。
身体是"学习"的本钱。没有一个好的身体,再大的能耐也无法发挥。因而,再繁忙的学习,也不可忽视放松锻炼。有的同学为了学习而忽视锻炼,身体越来越弱,学习越来越感到力不从心。这样怎么能提高学习效率呢?
四、学习要主动。
只有积极主动地学习,才能感受到其中的乐趣,才能对学习越发有兴趣。有了兴趣,效率就会在不知不觉中得到提高。有的同学基础不好,学习过程中老是有不懂的问题,又羞于向人请教,结果是郁郁寡欢,心不在焉,从何谈起提高学习效率。这时,唯一的方法是,向人请教,不懂的地方一定要弄懂,一点一滴地积累,才能进步。如此,才能逐步地提高效率。
五、保持愉快的心情,和同学融洽相处。
每天有个好心情,做事干净利落,学习积极投入,效率自然高。另一方面,把个人和集体结合起来,和同学保持互助关系,团结进取,也能提高学习效率。
六、注意整理。
学习过程中,把各科课本、作业和资料有规律地放在一起。待用时,一看便知在哪。而有的学生查阅某本书时,东找西翻,不见踪影。时间就在忙碌而焦急的寻找中逝去。我认为,没有条理的学生不会学得很好。
评:学习效率的提高,很大程度上决定于学习之外的其他因素,这是因为人的体质、心境、状态等诸多因素与学习效率密切相关。
找到合适你的才是最好的!
8. 课堂教学的形式有哪些
课堂教学形式主要有以下几种:
一、讲授式
教师主要运用语言方式,系统地向学生传授科学知识,传播思想观念,发展学生的思维能力,发展学生的智力。
二、问题探究式
教师或教师引导学生提出问题,在教师组织和指导下,通过学生比较独立的探究和研究活动,探求问题的答案而获得知识的方法。
三、训练与实践式
通过课内外的练习、实验、实习、社会实践、研究性学习等以学生为主体的实践性活动,使学生巩固、丰富和完善所学知识,培养学生解决实际问题的能力和多方面的实践能力。
课堂教学的五个定义:
定义1
课堂教学是指在课堂这一特定情境中教师教与学生学构成的双边活动。
定义2
课堂教学是指教师按照预定的教学方案,在给定的时空里,运用一定传授理论、技能、手段和方法,对一个班级或几个班级的学生进行一定内容的讲授、谈话、辅导答疑臊作示范。
定义3
课堂教学是指教师难、十分复杂的工作.为确保课堂教学质量评根据教学大纲、教学内容及教学进度要求,针价的客观性、真实性、合理性,必须建立一系对教学对象,以课堂为环境,利用教学设备和列合理的评价指标。
定义4
所谓课堂教学是指一种目标明确、按计划、有组织、有步骤的教师的教与学生的学相结合的双边活动过程。
定义5
所谓课堂教学是指纳入教学计划按照固定的授课时间表对学生进行授课的教学是按教学规律、语言规律、学习规律将学说普通话变成一种完全自觉的和循序渐进的活动。
9. 育英学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法
依题意分组法是(1,1,3),(1,2,2)共有
|