導航:首頁 > 教學教案 > 鴿巢原理教學設計

鴿巢原理教學設計

發布時間:2020-12-30 15:05:22

Ⅰ 什麼是數學廣角

「數學廣角」是義務教育課程標准實驗教科書從二年級上冊開始新增設的一個單元,是新教材在向學生滲透數學思想方法方面做出的新的嘗試。

教材以學生熟悉而又感興趣的生活場景為依託,重在向學生滲透這些數學思想方法,將學習活動置於模擬情景中,給學生提供操作和活動的機會,初步培養學生有順序地、全面地思考問題的意識,為學生今後學習組合數學和學習概率統計奠定基礎。

(1)鴿巢原理教學設計擴展閱讀

丁麗主編了《數學廣角學什麼與教什麼》這本書中明確分析過數學廣角,首先對「數學廣角」的每一個專題都進行了「教材解讀」,分析了每個課時的「教學目標」、「教學重點、難點」,琢磨了「編者意圖」。

1.等量代換

一個量用與它相等的量去代替,它是數學中一種基本的思想方法,也是代數思想方法的基礎。

如果a=b,b=c,那麼a=c。真正使用到的等量代換為:∀f(a=b∧f(a)→f(b)),其中f是合式公式廣義的等量代換舉例來說就是:「如果李四是張三的同義詞,張三是人,那麼李四是人」。

2.植樹問題

為使其更直觀,用圖示法來說明。樹用點來表示,植樹的沿線用線來表示,這樣就把植樹問題轉化為一條非封閉或封閉的線上的「點數」與相鄰兩點間的線的段數之間的關系問題。

3.數字編碼

大多數數字編碼採用位置表示法,即任何一個數字量都可以通過一些數字的和來表示。根據這些數字碼在表示式中所處的不同位置,有不同的值。也就是說,每個不同的位置,都具有自己的「權"。

Ⅱ 小學數學教案流程圖怎樣寫

【教學內容】

《義務教育課程標准實驗教科書·數學》六年級下冊第68頁。

【教學目標】

1.經歷「抽屜原理」的探究過程,初步了解「抽屜原理」,會用「抽屜原理」解決簡單的實際問題。

2. 通過操作發展學生的類推能力,形成比較抽象的數學思維。

3. 通過「抽屜原理」的靈活應用感受數學的魅力。

【教學重點】

經歷「抽屜原理」的探究過程,初步了解「抽屜原理」。

【教學難點】

理解「抽屜原理」,並對一些簡單實際問題加以「模型化」。

【教具、學具准備】

每組都有相應數量的盒子、鉛筆、書。

【教學過程】

一、課前游戲引入。

師:同學們在我們上課之前,先做個小游戲:老師這里准備了4把椅子,請5個同學上來,誰願來?(學生上來後)

師:聽清要求 ,老師說開始以後,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

師:開始。

師:都坐下了嗎?

生:坐下了。

師:我沒有看到他們坐的情況,但是我敢肯定地說:「不管怎麼坐,總有一把椅子上至少坐兩個同學」我說得對嗎?

生:對!

師:老師為什麼能做出准確的判斷呢?道理是什麼?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。下面我們開始上課,可以嗎?

【點評】教師從學生熟悉的「搶椅子」游戲開始,讓學生初步體驗不管怎麼坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象,激發了學生的學習興趣,為後面開展教與學的活動做了鋪墊。

二、通過操作,探究新知

(一)教學例1

1.出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎麼放?有幾種不同的放法?

師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況 (3,0) (2,1)

【點評】此處設計教師注意了從最簡單的數據開始擺放,有利於學生觀察、理解,有利於調動所有的學生積極參與進來。

師:5個人坐在4把椅子上,不管怎麼坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?

生:不管怎麼放,總有一個盒子里至少有2枝筆?

是:是這樣嗎?誰還有這樣的發現,再說一說。

師:那麼,把4枝鉛筆放進3個盒子里,怎麼放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)

師:誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況。

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1),

師:還有不同的放法嗎?

生:沒有了。

師:你能發現什麼?

生:不管怎麼放,總有一個盒子里至少有2枝鉛筆。

師:「總有」是什麼意思?

生:一定有

師:「至少」有2枝什麼意思?

生:不少於兩只,可能是2枝,也可能是多於2枝?

師:就是不能少於2枝。(通過操作讓學生充分體驗感受)

師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎麼放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那麼,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論呢?

學生思考——組內交流——匯報

師:哪一組同學能把你們的想法匯報一下?

組1生:我們發現如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

師:你能結合操作給大家演示一遍嗎?(學生操作演示)

師:同學們自己說說看,同位之間邊演示邊說一說好嗎?

師:這種分法,實際就是先怎麼分的?

生眾:平均分

師:為什麼要先平均分?(組織學生討論)

生1:要想發現存在著「總有一個盒子里一定至少有2枝」,先平均分,餘下1枝,不管放在那個盒子里,一定會出現「總有一個盒子里一定至少有2枝」。

生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

師:同意嗎?那麼把5枝筆放進4個盒子里呢?(可以結合操作,說一說)

師:哪位同學能把你的想法匯報一下,

生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎麼放,總有一個盒子里至少有2枝鉛筆。

師:把6枝筆放進5個盒子里呢?還用擺嗎?

生:6枝鉛筆放在5個盒子里,不管怎麼放,總有一個盒子里至少有2枝鉛筆。

師:把7枝筆放進6個盒子里呢?

把8枝筆放進7個盒子里呢?

把9枝筆放進8個盒子里呢?……



你發現什麼?

生1:筆的枝數比盒子數多1,不管怎麼放,總有一個盒子里至少有2枝鉛筆。

師:你的發現和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

【點評】教師關注了「抽屜原理」的最基本原理,物體個數必須要多於抽屜個數,化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數盒數多1,總有一個盒裡至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發展了學生的類推能力,形成比較抽象的數學思維。

2.解決問題。

(1)課件出示:5隻鴿子飛回4個鴿籠,至少有2隻鴿子要飛進同一個鴿籠里,為什麼?

(學生活動—獨立思考 自主探究)

(2)交流、說理活動。

師:誰能說說為什麼?

生1:如果一個鴿籠里飛進一隻鴿子,最多飛進4隻鴿子,還剩一隻,要飛進其中的一個鴿籠里。不管怎麼飛,至少有2隻鴿子要飛進同一個鴿籠里。

生2:我們也是這樣想的。

生3:把5隻鴿子平均分到4個籠子里,每個籠子1隻,剩下1隻,放到任何一個籠子里,就能保證至少有2隻鴿子飛進同一個籠里。

生4:可以用5÷4=1……1,餘下的1隻,飛到任何一個鴿籠里都能保證至少有2隻鴿子飛進一個個籠里,所以,「至少有2隻鴿子飛進同一個籠里」的結論是正確的。

師:許多同學沒有再擺學具,證明這個結論是正確的,用的什麼方法?

生:用平均分的方法,就能說明存在「總有一個鴿籠至少有2隻鴿子飛進一個個籠里」。

師:同意嗎?(生:同意)老師把這位同學說的算式寫下來,(板書:5÷4=1……1)

師:同位之間再說一說,對這種方法的理解。

師:現在誰能說說你對「總有一個鴿籠里至少飛進2隻鴿子的理解」

生:我們發現這是必然存在的一個現象,不管鴿子怎樣飛回鴿籠,一定會有一個鴿籠里至少有2隻鴿子。

師:同學們都有這個發現嗎?

生眾:發現了。

師:同學們非常了不起,善於運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那麼讓我們再來看這樣一組問題。

(二)教學例2

1.出示題目:把5本書放進2個抽屜里,不管怎麼放,總有一個抽屜里至少有幾本書?

把7本書放進2個抽屜里,不管怎麼放,總有一個抽屜里至少有幾本書?

把9本書放進2個抽屜里,不管怎麼放,總有一個抽屜里至少有幾本書?

(留給學生思考的空間,師巡視了解各種情況)

2.學生匯報。

生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

板書:5本 2個 2本…… 餘1本 (總有一個抽屜里至有3本書)

7本 2個 3本…… 餘1本(總有一個抽屜里至有4本書)

9本 2個 4本…… 餘1本(總有一個抽屜里至有5本書)

師:2本、3本、4本是怎麼得到的?生答完成除法算式。

5÷2=2本……1本(商加1)

7÷2=3本……1本(商加1)

9÷2=4本……1本(商加1)

師:觀察板書你能發現什麼?

生1:「總有一個抽屜里的至少有2本」只要用 「商+ 1」就可以得到。

師:如果把5本書放進3個抽屜里,不管怎麼放,總有一個抽屜里至少有幾本書?

生:「總有一個抽屜里的至少有3本」只要用5÷3=1本……2本,用「商+ 2」就可以了。

生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。

師:到底是「商+1」還是「商+余數」呢?誰的結論對呢?在小組里進行研究、討論。

交流、說理活動:

生1:我們組通過討論並且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。

生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,餘下的2本可以在2個抽屜里再各放1本,結論是「總有一個抽屜里至少有2本書」。

生3∶我們組的結論是5本書平均分放到3個抽屜里,「總有一個抽屜里至少有2本書」用「商加1」就可以了,不是「商加2」。

師:現在大家都明白了吧?那麼怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?

生4:如果書的本數是奇數,用書的本數除以抽屜數,再用所得的商加1,就會發現「總有一個抽屜里至少有商加1本書」了。

師:同學們同意吧?

師:同學們的這一發現,稱為「抽屜原理」,「 抽屜原理」又稱「鴿籠原理」,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱「狄里克雷原理」,也稱為「鴿巢原理」。這一原理在解決實際問題中有著廣泛的應用。「抽屜原理」的應用是千變萬化的,用它可以解決許多有趣的問題,並且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
3.解決問題。71頁第3題。(獨立完成,交流反饋)

小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。

【點評】在這一環節的教學中教師抓住了假設法最核心的思路就是用「有餘數除法」 形式表示出來,使學生學生藉助直觀,很好的理解了如果把書盡量多地「平均分」給各個抽屜里,看每個抽屜里能分到多少本書,餘下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數多1本。特別是對「某個抽屜至少有書的本數」是除法算式中的商加「1」, 而不是商加「余數」,教師適時挑出針對性問題進行交流、討論,使學生從本質上理解了「抽屜原理」。

三、應用原理解決問題

師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什麼牌。請大家猜測一下,同種花色的至少有幾張?為什麼?

生:2張/因為5÷4=1…1

師:先驗證一下你們的猜測:舉牌驗證。

師:如有3張同花色的,符合你們的猜測嗎?

師:如果9個人每一個人抽一張呢?

生:至少有3張牌是同一花色,因為9÷4=2…1

Ⅲ 鴿巢問題教學設計的教學中,會用到哪些游戲

教學目標 :了解「鴿巢問題」的特點,理解「鴿巢原理」的含義;經歷「鴿巢原理」的學習過程,體驗觀察,猜測 ,實驗 ,推理等活動的學習方法,滲透數形結合的思想;通過用「鴿巢問題」解決簡單的實際問題,激發學生的學習興趣,使學生感受數學的魅力。 重點:整合教材,由淺入深,逐層深入引導學生把具體問題轉化成鴿巢問題,最終達到深入淺出解決問題。 難點:找出鴿巢問題解決的竅門進行反復推理。並對一些簡單的實際問題加以「模型化」。 教學准備:課件、撲克牌。 學生准備:小棒、杯子。 教學過程: 一、情境導入:由游戲「搶凳子」引入課題並板書課題「鴿巢問題」 二、探究新知 1.動手操作,動畫演示 (1)(擺一擺)4隻鴿子飛進3個鴿巢,會怎麼飛呢?請同學們用小棒當鴿子,杯子做鴿巢,試試看!並把各種結果用你喜歡的方法記錄下來。 (2)(議一議)教師引導學生分析各種情況,得出結論,不管怎麼飛,總有一個鴿巢里至少飛進了2隻鴿子。 (3)(飛一飛):4隻鴿子飛進3個鴿巢,要使每個鴿巢里鴿子最少,該怎麼飛?你能發現什麼?通過引導讓學生說出平均分的方法。 2.以此類推,發現規律 (1)6隻鴿子飛進了5個鴿巢,總有一個鴿巢里至少飛進了( )只鴿子?你是怎麼想的? (2)100隻鴿子飛進了99個鴿巢,總有一個鴿巢至少飛進了( )只鴿子?

閱讀全文

與鴿巢原理教學設計相關的資料

熱點內容
北京高中作文耐心 瀏覽:59
變作文600字初中 瀏覽:660
2011台州中考語文 瀏覽:250
識字一的教案 瀏覽:85
語文作業本凡卡答案 瀏覽:619
300書信作文大全 瀏覽:227
蘇教版五年級語文下冊補充成語ppt 瀏覽:891
愛的方式作文開頭結尾 瀏覽:694
端午節的作文600字初中 瀏覽:70
3年級上冊語文作業本答案 瀏覽:265
高考語文與小學的聯系 瀏覽:965
2015北京語文中考答案 瀏覽:979
雙分點地步法教學 瀏覽:714
小學二年級作文輔導課 瀏覽:693
關於成功條件的作文素材 瀏覽:848
建軍節作文的結尾 瀏覽:88
五年級下冊語文mp3在線收聽 瀏覽:696
ie教案6 瀏覽:907
三年級語文培優補差計劃 瀏覽:679
二胡獨奏一枝花教學 瀏覽:525