⑴ 初中數學人教版頂尖教案和優秀教案哪個好用
看書名按理說是頂尖教案,但要袖子教輔資料使用的匹配度,只要對自己有幫助的書籍都是好書
⑵ 免費下載人教版初中數學教案
http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12261.html
《18.1 勾股定理》教案
-------人教版義務教育課程標准實驗教科書《數學》八年級(下)
課題:18.1 勾股定理
教學任務分析
授課時間 授課班級 課型 新授課
教 學 目 標 知識技能 1、了解勾股定理的文化背景。
2、體驗勾股定理的探索過程。
3、運用勾股定理進行簡單計算。
數學思考 在勾股定理的探索過程中,發展合情推理能力,體會數形結合的思想。
解決問題 1、通過拼圖活動,體驗數學思維的嚴謹性,發展形象思維。
2、在探究活動中,學會與人合作並能與他人交流思維的過程和探究結果。
3、初步滲透運用勾股定理解決直角三角形相關的問題的數學方法。
情感態度 1、通過對勾股定理歷史的了解,感受數學文化,激發學習熱情。
2、在探究活動中,體驗解決問題方法的多樣性,培養學生的合作交流意識和探索精神。
......
http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12260.html
三角形全等的條件——兩角和一邊
課題:13.2§三角形全等的條件——兩角和一邊
授課時數:一課時
授課班級:八年級
設計內容:三角形全等的條件——兩角和一邊
1、學情分析:(1)學生的認識基礎:學生基本明確了要判斷兩個三角形全等,至少需要三個要素,並且三個元素有一定的位置關系。(2)學生理解和掌握回感到困難,主要表現在:①想像力差,②用判斷方法進行說理或證明思路混亂,不知從何下手,應用能力差。
2、教學目標:
1)知識目標:①使學生能靈活運用「角邊角」規律及其角角邊規律來判定三角形全等。②使學生會利用「角邊角」規律及其角角邊規律進行簡單的證明。
過程與方法:在探索三角形全等的條件的活動過程中,讓學生真正體會到兩個三角形全等對應邊、角之間的內在聯系,形成符號與語言
......
⑶ 跪求新人教版初中數學教案
19.4 菱形
19.4.1 菱形(一)
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解並掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點
1.教學重點:菱形的性質1、2.
2.教學難點:菱形的性質及菱形知識的綜合應用.
三、例題的意圖分析
本節課安排了兩個例題,例1是一道補充題,是為了鞏固菱形的性質;例2是教材P108中的例2,這是一道用菱形知識與直角三角形知識來求菱形面積的實際應用問題.此題目,除用以鞏固菱形性質外,還可以引導學生用不同的方法來計算菱形的面積,以促進學生熟練、靈活地運用知識.
四、課堂引入
1.(復習)什麼叫做平行四邊形?什麼叫矩形?平行四邊形和矩形之間的關系是什麼?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強調】菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學生舉一些日常生活中所見到過的菱形的例子.
五、例習題分析
例1 (補充) 已知:如圖,四邊形ABCD是菱形,F是AB上一點,DF交AC於E.
求證:∠AFD=∠CBE.
證明:∵四邊形ABCD是菱形,
∴ CB=CD, CA平分∠BCD.
∴ ∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴ ∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD, ∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2 (教材P108例2)略
六、隨堂練習
1.若菱形的邊長等於一條對角線的長,則它的一組鄰角的度數分別為 .
2.已知菱形的兩條對角線分別是6cm和8cm ,求菱形的周長和面積.
3.已知菱形ABCD的周長為20cm,且相鄰兩內角之比是1∶2,求菱形的對角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.
七、課後練習
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為 8cm,求菱形的高.
2.如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積.
19.4.2 菱形(二)
一、教學目的:
1.理解並掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;
2.在菱形的判定方法的探索與綜合應用中,培養學生的觀察能力、動手能力及邏輯思維能力.
二、重點、難點
1.教學重點:菱形的兩個判定方法.
2.教學難點:判定方法的證明方法及運用.
三、例題的意圖分析
本節課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,並會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什麼困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.
四、課堂引入
1.復習
(1)菱形的定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質1 菱形的四條邊都相等;
性質2 菱形的對角線互相平分,並且每條對角線平分一組對角;
(3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)
2.【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?
3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什麼時候變成菱形?
通過演示,容易得到:
菱形判定方法1 對角線互相垂直的平行四邊形是菱形.
注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2 四邊都相等的四邊形是菱形.
五、例習題分析
例1 (教材P109的例3)略
例2(補充)已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交於E、F.
求證:四邊形AFCE是菱形.
證明:∵ 四邊形ABCD是平行四邊形,
∴ AE∥FC.
∴ ∠1=∠2.
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF.
∴ EO=FO.
∴ 四邊形AFCE是平行四邊形.
又 EF⊥AC,
∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形).
※例3(選講) 已知:如圖,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB於H,CD交BE於F.
求證:四邊形CEHF為菱形.
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.
六、隨堂練習
1.填空:
(1)對角線互相平分的四邊形是 ;
(2)對角線互相垂直平分的四邊形是________;
(3)對角線相等且互相平分的四邊形是________;
(4)兩組對邊分別平行,且對角線 的四邊形是菱形.
2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.
3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交於E,求證:四邊形OCED是菱形。
七、課後練習
1.下列條件中,能判定四邊形是菱形的是 ( ).
(A)兩條對角線相等 (B)兩條對角線互相垂直
(C)兩條對角線相等且互相垂直 (D)兩條對角線互相垂直平分
2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.
3.做一做:
設計一個由菱形組成的花邊圖案.花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是後一個菱形的一個頂點.畫出花邊圖形.