『壹』 高中數學學習方法
第一人人可以占,原來占第一的同學也不一定就比你更聰明多少,腦細胞也不一定比你多。愛迪生不是說過「天才是百分之九十九的汗水加上百分之一的靈感」嗎?!所以你第一要過心理關,就是說:要堅信你一定能成功,一定會超過現有的第一,包括現在是第一的你自已。
第二、你要天天鍛煉。沒有一個健康的身體,你什麼事也做不好,即使偶爾做好了,也不能長久。每天30分鍾左右的鍛煉一定要天天堅持。鍛煉的形式多種多樣,跑步、打乒乓球、打籃球、俯卧撐、立定跳遠等等都可以。有些同學好面子,見到別人不跑步,怕自已跑別人看見了不好意思,那就錯了,真正不好意思的是辛苦了幾年考不上大學,是上了幾年大學還要下崗。如果將來自已養活不了自已,那才是真正不好意思的。
第三、學習態度要端正。每次上課前,一定要把老師准備講的內容預習好,把不好理解的、不會的內容做好標記,在老師講到該處時認真聽講。如果老師講了以後還不會,一定要再問老師,直到明白為止。當一個問題問了兩遍三遍還不會時,一般的同學就不好意思問了,千萬別這樣,老師們最喜歡「不問明白誓不罷休」的性格了。上課時要認真聽講,認真思考,做好筆記。做筆記時一定要清楚,因為筆記的價值比課本還重要,將來的復習主要靠它。課下首先要做的不是做作業,而是把筆記、課本上的知識點先學好,該記的內容一定把它背熟。這樣會大大提高你做作業的速度,即平常說的「磨刀不誤砍柴功」。做作業時應該獨立思考,實在不能解決的問題,再和同學、老師商量。問同學時,不要問這道題結果是什麼,而是要問「這道題究竟怎麼做?」「這道題為什麼這樣做?」
第四、正確面對錯誤和失敗。當有的知識你沒有在課上學會、當你的練習做錯時或者在考試中成績太差時,你既不要報怨,也不要氣餒,你應該正視這自已不願得到的現實。沒有學會不要緊,把該知識寫到你的《備忘錄》中,然後問同學問老師,再把正確的解釋或結果,寫到其它頁上。錯了題也是這樣,考試失利不就是錯的題多點嗎,正確的方法是把原題抄到《備忘錄》中,把正確的做法學會後,把做法和結果寫到其它頁上,如果能註上做該類題的注意事項,就會把你的學習效率又提高30%-60%。之所以把答案或解釋寫到其它頁上,就是為了下次看知識點或錯誤的題目時,再動動腦筋,想想該知識點的理解和解釋情況,再練練該題的做法和答案。錯誤和失敗並不可怕,只要你能正視它,一切都會成為你成功的動力。
第五、記帳。你的學習一定要有一本帳,你什麼時候做得好,記下來,什麼時候錯了題,記下來(註:帳本上只記「今天錯題為《備忘錄》××頁×題)。課下幾點幾分學了英語,記錄好;幾點幾分至幾點幾分學了物理記下來。把你生活中鍛煉、學習的分分秒秒記錄在你的帳本上,把你每次作業和考試中的正確題數、錯誤題數和錯誤題號(《備忘錄》上的頁號題號)一一記錄在你的帳本上。把你每天學會的知識點都記錄在帳本上,以備明天、後天再檢查一下自已是否真正掌握了這些知識點。在帳本上過去了幾天的知識點,你一定要學會並能熟練掌握。帳本記錄的是你學習、鍛煉中每一個細節。這樣記下來,在校生活中,每天約有一頁32開紙的記錄量,不在校時可能有兩頁32紙的記錄量。在星期和假期里千萬不能間斷。把你的帳一天天積累起來,這就是你所走過的第一之路。
『貳』 如何學好高中數學學習方法有哪些
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
『叄』 如何進行高中數學概念教學
1.在引入新概念時,把相關的舊概念聯系起來,確立信任學生的觀念,大膽放手讓學生把某種情境用數學方法加以表徵;在形成概念時,留給學生充足的思維空間,多角度、全方位地提出有價值的問題,讓學生思考;指導學生自主地建構新概念.在辨識概念時,鼓勵學生質疑.從學生的角度看,學貴有疑是學習進步的標志,也是創新的開始.
2.在學習數學定理、公式、方法時,離不開對命題的證明,應當改變傳統的分為「展示定理、推證定理、應用定理」簡單三步的模式,而結合實際情況,在證明命題前為學生創設認知沖突的疑惑情境.經過一段訓練後,學生便能清楚什麼是數學證明,什麼不是.並且知道數學證明的價值及其局限性.
3.所謂「教學有法,但無定法」,教師要能隨著教學內容的變化,教學對象的變化,教學設備的變化,靈活應用教學方法.數學教學的方法很多,對於新授課,我們往往採用講授法來向學生傳授新知識.而在立體幾何中,我們還時常穿插演示法,來向學生展示幾何模型,或者驗證幾何結論.如在教授立體幾何之前,要求學生每人用鉛絲做一個立方體的幾何模型,觀察其各條棱之間的相對位置關系,各條棱與正方體對角線之間、各個側面的對角線之間所形成的角度.這樣在講授空間兩條直線之間的位置關系時,就可以通過這些幾何模型,直觀地加以說明.
4.教師可利用現代化的多媒體教學手段.可能的話,教學可以自編電腦課件,藉助電腦來生動形象地展示所教內容.如講授正弦曲線、餘弦曲線的圖形、棱錐體積公式的推導過程都可以用電腦來演示.
我想要做到上述幾個方面,必須改變傳統的單一的「傳授——接受」的教學模式,要留給學生思維的空間,同時要鼓勵學生提出不同的想法和問題,提倡課堂師生的交流和學生與學生間的交流,因為交流可令學生積極投入和充分參與課堂教學活動.通過交流,不斷進行教學信息的交換、反饋、反思,可修正思維策略,概括和總結數學思想方法.在交流中,作為老師耐心傾聽學生提出的問題,並從中捕捉有價值的問題,展開課堂討論,並適時作出恰當的評價,使班集體成為一個學習的共同體,共同分享學習的成果.
『肆』 高中數學教學的基本方法
要想成為一名優秀的高中數學教師,必須學會以下的幾種教學方法:
減少坡度,平穩過渡
教學內容由初級中學較淺顯、具體的內容一下轉到高級中學較深奧、抽象的內容。如在數學閱讀方面,初級中學對閱讀教材的深度、難度、廣度要求較低,而高級中學階段要求了解更多的物理及其它自然學科知識。特別是初級中學普通代數及平面幾何與高級中學數學教學方法有很大的差別,學生一下子難以適應。因而這個階段的教學關鍵在於使初級中學和高級中學階段的教學自然銜接和平穩過渡,使學生盡快適應高中數學教學。
剛升入普通高中學生數學成績參差不齊,學生能力相差懸殊。所以高中數學起始教學,尤其要適當降低起點,減少坡度,放慢速度,盡可能使全體學生在同一起跑線上齊步前進。這樣可使本身數學不理想的學生獲得成功的喜悅,從而激活其自身的學習機制,滿懷信心地學好高中數學。
激發興趣,培養能力
高中階段以學生獨立思考、老師分析、指點為主。這不僅給學生帶來新鮮感,甚至以自己能獨立解決問題還獲得了一份自豪感。此外,"起始教學"就意味著新的起點。學生普遍有新的打算,有學好功課的決心和信心,即使成績差的學生,也有"而今邁步從頭越"的決心,因而教師因該珍惜這階段學生的學習積極性,抓住機遇,最大限度地保護和激發學深的興趣和求知慾。
激發學生的學習興趣和求知慾要注意以下幾點:
1.貼近學生生活,營造良好的課堂氛圍,給每個學生提供數學思維的時間和機會。比如在"均值不等式"一節的教學中,可設計如下問題,引導學生從中發現關於均值不等式的定理及其推論。
某商店在節前進行商品降價酬賓銷售活動,擬分兩次降價。有三種降價方案:甲方案是第一次打P折銷售,第二次打q折銷售;乙方案是第一次q折銷售,第二次打p折銷售;丙方案是兩次都打(p+q)/2折銷售。請問:那一種方案降價較多?
2.設置思維環境,進行思維式教學。教師應創設情景,讓學生猶如親臨其境,進行獨立思考,他們就會保持4~5分鍾的學習積極性。教師要盡量利用直觀形象的方法,如講"倒數與微分"時可以直接引入物理學中的"位移與速度的關系式",讓學生在已有的知識下前提下了解新內容。多媒體教學手段的使用,可使學生進一步形象地觀察所學的知識。總之,數學教學的目的是要學生在實際使用中掌握知識能力,在思考行為中發展思維,在做題實踐中提高解題能力。
3.進行成功教學。學生的學習興趣和求知慾能否持久,與他們能否取得成功有很大的關系。根據學生的不同實際,創設適度緊張的氣氛,設計難易適度的練習,盡量給每個學生創造良好的機會。成功教學其實也是一種情感教學。正如原蘇聯教育家蘇霍姆林斯基所說:"成功的歡樂是一種巨大的情緒力量,他可以促進兒童好好學習的願望。"事實上,每個人都希望獲得成功的喜悅,因此教師要愛護、關心學生,特別是成績差的學生,要看到他們的點滴進步。那種動輒批評,或歧視差生的態度和做法,會極大地創傷學生的自尊心和積極性,是每個教師必須注意克服的。
4.進行情感交流,增強學習興趣。"感人心者莫先乎情",教師應加強與學生情感的交流,增進與學生的友誼,關心愛護他們,熱情地幫助他們解決學習和生活中的困難。做學生的知心朋友,使學生對老師有較強的責任感、親近感,那麼學生就會自然而然地過渡到喜歡你所教的數學學科上了。達到"尊其師,信其道"的效果。
和學生進行情感交流的另一個方面是:教師通過數學或數學史學的故事等,來讓學生了解數學的發展、演變及其作用,了解數學家們是如何發現數學原理及他們的治學態度等。例如:給學生講"數學之王--高斯"、"幾何學之父--歐幾里德"、"代數學之王--韋達"、"數學之神--阿基米德"等數學家的故事,不僅使學生對數學有了極大的興趣,同時從中也受到了教育。起到了"動之以情,曉之以理,引之以悟,導之以行"的作用。
5.及時反饋,不斷激發學習動機。學生學習的情況怎樣,這需要教師給予確當的評價,以深化學生已有的學習動機,矯正學習中的偏差。教師既要注意課堂上的反饋,也要注意及時對作業、測試、活動等情況給予反饋。使反饋與評價相結合,使評價與指導相結合,充分發揮信息反饋的診斷、導向和激勵作用,深化學生學習數學的動機。
數學教學的效果與別的學科不同,更帶有"立竿見影"的性質,成功與失敗的機會更多。教學不得法,一月半月下來,學生的成績馬上會拉開距離,出現嚴重的"兩極分化"。所以,高中階段數學的起始教學,更顯得重要。
『伍』 數學的教學方法有哪些
有7種常用的數學教學方法:
1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。
2..談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的經驗和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。
3.討論方法是一種方法,使整個班級或小組圍繞某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。
4.演示方法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。
5.練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。
6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。
7.實習是一種教學方法,學生可以使用某些實習場所,參加某些實習,掌握一定的技能和相關的直接知識,或者驗證間接知識並全面應用所學知識。
數學教學方法(methods. of mathematics teach-ing)教學方法的一種.教師指導學生學好數學基礎知識,提高數學基本技能,發展數學才能,進行思品德教育的方式、方法.它既包括了教師教的方法,也包括了學生學的方法.數學教學方法對於激發學生學習數學的興趣,實現數學教學目的,提高數學教學質量,都起著重要的作用.
遠在中國春秋末期和古希臘時期,就有講解、問答、練習、復習等方法的記載.古代主要採用講授法,近代推行了演示、觀察、實驗、參觀等新方法,並改進了解、談話等方法.近些年來隨著現代科學技術的進步,現代化教學手段的使用,教育學與心理學新成就的出現,資訊理論、控制論與系統論新學科的建立與發展,為數學教學方法的改進與發展提供了良好條件。
常用的數學教學方法有:啟發、講解、談話、練習、討論、演示、實習、觀察、復習等,其中,啟發、講解、談話、練習等用的較多.當前國內外正在實驗的數學教學方法有:發現、研究、自學輔導、程序教學、最優化教學、演算法化教學、「讀讀、議議、講講、練練」等。
『陸』 對新課改下高中數學教學的幾點建議
新課標下高中數學是從課程內容結構、課程目標到教育理念都與傳統高中數學課程很大的不同,對我國高中數學教學將產生深遠而重大的影響,對教師的數學素養提出了更高的要求。因此,在新課標的實施中要實現數學課程改革的目標,一線的老師是起作關鍵的作用。在新課標下的高中數學老師要對高中數學新課程改革的精髓,對新一輪數學課程改革從理念、內容到實施,都要有深刻的理解與領悟。在一年多的新教材的教學中,在新課程教學理念逐漸的深入人心的氛圍之中,作為一線的老師在教學實施中困惑也隨之產生。
一、新課標下高中數學教學實施存在的問題
1、教材的問題。教材是按照教學大綱編寫的,是教師傳授知識的主要依據,是學生獲得知識掌握技能、技巧的主要源泉之一。北師大版新教材存在著以下問題:
(1)知識的順序編排不合理。近年來,中學數學教材作了一些刪減,並調整了一些內容的順序。例:未學解不等式,就學指數函數、對數函數,造成學函數的定義域、值域,集合的運算等等問題難以解決。
(2)知識的刪減不科學。新教材大量增加了現代數學的重要基礎知識,新教材不同與舊教材,最突出的部分是增加了「研究性課題」的學習。但是也存在著一定漏洞的問題。如:立體幾何常用幾何體的性質刪減後,學生對幾何體的交線在底面的交點在什麼地方都不知道,這是老教材沒有的事。
(3)與其它學科的協調沒有做好。我國設置高中數學課程的出發點,是為廣大的高中學生提供進一步的數學基礎,使之能適應現代化生活,為進一步學習做好准備。由於受西方數學等因素的影響,高中數學偏重於思維訓練價值,而忽視了數學的應用價值,同時也出現了與其他學科脫節,不協調等現象。例如:人教版高一下學期生物必修2中要用到概率計算問題,而數學卻把概率放到了高二上學期必修3當中。高一第一學期物理要學力學,會用到三角函數向量等知識,但數學卻把這部分內容放在必修4才學,造成學科之間知識脫節。
(4)教材內容與習題搭配有不合理之處。如人教版高一下學期生物必修2課本第28頁的B組題,第49頁的7題(個人所得稅問題)等難度過大。
(5)函數應用問題設置過難。我認為高中數學內容不應該只強調知識、內容等更要注重方法和過程,這樣才能開啟學生的思維,使學生樹立正確的數學價值觀。如高一上學期必修1課本第108頁的例2,解答繁長,計算量大,達不到使學生對不同增長的函數模型的體驗。
(6)很難做到使用現代信息技術解決問題。由於學校條件的限制,學生不能使用計算機作函數的圖象。由於大多數學生沒有計算器,函數應用的教學中學生不能體會演算法的思想,達不到應有的教學效果。
2、初高中知識內容的銜接存在脫節現象。初中所學知識是高中知識的基礎,高中知識則是初中知識的擴展和延伸。如果初中知識和高中知識存在著知識的脫節的話,學習高中知識就會有一定的困難。根據一年多的新教材的教學,我發現北師大版高中數學存在著初高中知識內容的銜接存在脫節現象。主要表現在:
(1)部分應用知識要求降低。如:乘法公式只有兩個(即平方差,完全平方公式)沒有立方和立方差公式;在多項式相乘方面僅指一次式相乘,會影響到今後二項式定理及其相關內容的教學;因式分解的要求降低。初中只要求提公因式法、公式法,而十字相乘法、分組分解法新課標不作要求,但高中要經常用到這兩種方法;反證法:課標只要求通過實例,體會反證法的含義,要求不高;但在高中遇到「至多」「最多」「至少」「唯一」等字詞的證明題,需要用反證法。例如選修1-1《常用邏輯用語》一章經常出現。
(2)知識銜接方面。例如:可化為一元二次方程的分式方程、無理方程、二元二次方程都已不作要求,會影響到今後學數列有關計算(往往用方程的思想解決問題);根式的運算明顯淡化,如不加強根式運算,以後求圓錐曲線標准方程會受到影響。初中沒有「軌跡」概念,高中講解析幾何時會講到,學生對有關求軌跡問題很困惑,有無從下手之感;一元二次方程根的判別式在初中新課標不要求。在高中教直線與圓錐曲線綜合應用時常常要用到,在涉及到函數圖象交點問題也常用到,這無疑是一個障礙;平行線線段成比例定理初中沒有,這樣在立體幾何的教學中,空間的線面平行等問題受到影響;空間直線、平面的位置關系初中沒有。因此,高中學立體幾何時會受影響。
(3)知識刪減問題。在新課標中,圓的垂徑定理、弦切角定理、相交弦定理、切割線定理被刪去了,在高中必修2的解析幾何中常常會用到;相切在作圖中的應用初中不作要求,在高中有相切問題;正多邊形的有關計算。
3、關於「小組學習」的困惑。《數學新課程標准》強調:「數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發展的過程;動手實踐,自主探索,合作交流是學生學習數學的重要方式;合作交流的學習形式是培養學生積極參與、自主學習的有效途徑」。合作交流的學習主要是以小組合作的形式,它能充分體現教學民主,能給予學生更多自由活動的時間和相互交流的機會。
從我教學實踐中感悟到:小組合作的學習方式看似簡單易學,但稍有不慎就會使課堂氣氛得不到較好的調控,達不到預期的目的。很多時候「合作」都只是流於形式,盲目跟從,學生沒有得到真正發展。小組合作學習確實增加了學生參與的機會。但是常常是好學生機會更多,扮演著一種幫助的角色;困難學生成了聽眾,得不到獨立思考的機會而直接從好學生中獲得信息,致使困難學生在小組合作學習中的獲益比在班級教學中的獲益還少,在小組活動中好學生發言的機會多,代表小組匯報的現象多;小組活動中出現的一些放任自流的現象,……等等這些問題,不能不引起我們的思考。
4、課時嚴重不足。高中數學新課程改革啟動以後,教師普遍認為存在著課時嚴重不足的問題:教材越編越厚,習題越配越難,尤其是B、C組練習題。內容越上越多,感到教學如同追趕……。在教學中,經常出現一節課的教學任務完不成的現象,更談不上留有鞏固練習的時間。要用9周36課時(每周4課時)完成數學必修一個模塊的教學任務,真是難上加難。每個學期要學完兩大本書,相當於過去學習一年的內容。
以北師大版高中數學必修1為例,初中的二次函數、指數冪的運演算法則、對數概念及其運算等內容已經壓到高中,和傳統的高中數學內容相比,高中數學必修1還增加了函數與方程、函數建模及其應用等內容,造成了速度快、學得淺、負擔重、質量差的現象。如:「平面向量的數量積」,規定2課時,「空間幾何體的表面積與體積」規定1課時等等,如此編排引起了課時的嚴重不足,如果勉強按規定時間講完,肯定不利於學生掌握,形成似懂非懂,「夾生飯」造成差生越來越多。
二、新課標下高中數學教學實施存在的問題成因
我校在實施高中數學過程中雖然老師進行了崗前培訓,學校也反復的組織大家學習,老師們也意識到新課改的重要性和史命感。但課程改革推行到今天,遭遇到了種種問題,這些問題的產生也有著其必然的原因,概括起來,有以下幾個方面。
1、教材編排問題。由於大多數教材編委基本上是大學教授,他們長時間脫離了一線教學,在編排課本時忽略了初高中知識的銜接問題,以及對各科知識的交叉等方面了解不是很深,同時內容上大多注重大中城市學生的素質發展,沒有考慮到邊遠山區孩子的實際受教育情況。綜合以上幾點原因,造成了高中新教材存在著部分瑕眥。
2、學生自身問題。首先大部分高一學生原有的認知結構不完善,對新知識缺乏必要的知識基礎,就會使新知識難於納入到原有的認知結構之中,無法理解新知識的實質性含義,自然而然形成了知識認知結構不完善;其次學生的思維能力達不到教學內容的要求,相當一部分學生只重視機械模仿練習,不重視探索、概括、推理、質疑、反思和總結,表現在解決一些模型化、形式化的問題,如應用題、定理證明、代數推理等能力題型,就缺乏符號化、數學化的能力,找不到解題的目標和策略。
3、教師自身問題。教師是教學活動的組織者,部分教師沒有靈活的處理教材,又對教材理解不透,甚至出現了照本宣科的現象,這樣容易造成學生接受知識方面的困難。如面對初中知識「十字相乘法」講解問題,很多老師採取迴避的態度,實際上可以採用數字游戲教學方法。
三、解決問題的幾點建議
新課標下的高中數學分必修與選修兩大類,必修有5個模塊,這些內容是每一個高中生都要學習的,無論是畢業後進入社會還是進入大學深造都是非常重要的基礎。主要注重打好數學基礎,掌握基本能力。但內容的抽象性、理論性強,在能力要求方面遠高於義務教育階段的初中水平,這些都對老師們的理論和實踐水平提出了前所末有的挑戰,雖然筆者學淺,但在一年的新課改的教學實踐中得到一點心得,給大家幾點建議
1、依據課標要求,創造性地使用教材,使用教具。
高中數學課程標準是國家對高中學生在數學領域的基本素質的要求,教材則是實現課程目標,實施教學的重要資源,它是依據課標而編寫的。在教學中,應以課標為主,創造性地使用教材,即用教材教而不是只教教材。數學教材中存在許多問題,教師應認真理解課標,對教材中不符合課標要求的題目要大膽地刪減;對課標要求的重點內容要作適量的補充;對教材中不符合學生實際的題目要作適當的改編。此外,還應全面了解必修與選修內容的聯系,要把握教材的「度」,不應採取一步到位法,如函數性質的教學,要多次接觸,螺旋上升,實行分層教學。
2、根據實際情況,採取行之有效的教學方法。
教學是師生之間的對話、溝通、合作、共建的交往活動。採取行之有效的教學方法能收到事半功倍的效果。面對新課程,教師應改變舊的教學方式,充分發揮主導作用,成為學生學習知識建構的指導者和促進者。在高中數學新課程的實施中,教師應從學生已有的知識經驗出發,創設豐富的教學情境,營造一個和諧的課堂氣氛,傾聽學生的回答並適度評價,為學生的發展提供時間與空間,激發學生探求新知識的興趣。教師要培養學生形成良好的學習習慣,引導學生探究學習,領會數學思想方法,構建知識,訓練技能,獲得數學活動的經驗
同時,對於傳統的行之有效的教學經驗,我們應該繼承和發揚。傳統的聽課理解、模仿記憶、練習作業等,仍然是當前高中數學學習的主要形式。可以對傳統的學習方式適當改造,指導學生進行探究性學習,鼓勵學生在解決數學問題的過程中,積極思考,探索規律。這樣既解決了課時不足問題又解決了教材編排存在的漏洞問題。
3、適應新課標的要求,靈活運用信息技術教學。
多媒體教學相對於傳統教學手段而言,直觀新穎,能有效利用情景演示激發學生學習興趣,開發學生的潛能,使有意識的學習活動和無意識的學習活動相結合。不僅豐富了教學內容,也活躍了課堂氣氛,調動學生求知的自覺性和主動性。在教學中,把抽象的數學概念作形象化處理,靈活運用多媒體教學尤為重要。如:北師大版高中數學必修5「一元二次不等式的應用「例題解不等式(ⅹ-1)(ⅹ-2)(ⅹ-3)>0用數學軟體或圖形計算機作出函數y=(ⅹ-1)(ⅹ-2)(ⅹ-3)的圖像,並追蹤圖像上的點的坐標,可以近似直觀看出不等式的解集。如果沒有採用這種解題方法,必須經過三步復雜的解題步驟才能完成,而且圖像相當復雜。
「書越來越難教」,這是普遍基層老師的感慨。如何在新課標下運用新的理念,解決新課標下高中教學存在的問題,真正地達到新課標的要求還需我們不斷努力地摸索出新的教學方式,改變教學理念,提高學生們的學習興趣。我們只有邊實踐邊反思邊改進,努力提升自己的綜合能力,才能找到更適合學生終身發展的教學方法。新課程向我們提出了新的挑戰,也給我們帶來了新的機遇,我們應該把握住這次機會,和學生共同進步。
『柒』 進行高中數學教學前需要哪些准備
無論是教什麼課抄,都襲應該明白,方法比什麼都重要!
所以,你首先要明白怎樣可以讓孩子們接受你的教學方法。
其次,要結合學生的特點,不同學生不同的教學功能。跟我們的國家形勢一樣,一部分先富帶動其他人再富起來!這個需要在教學生活中慢慢摸索,慢慢來,不急!
最後,把要教和要學習的重點和零碎的知識點串聯起來,是應該好好考慮的!這個得下功夫,從全局全教科書做一個大的概念,完了再慢慢的填充進去!
總的來說,現在教育的特點就是,教孩子們方法,比教知識重要!甚至在以後參加工作或是生活中,一個好的方法都可以改變一個人一生!
教學相長,慢慢來,總會有屬於自己的方法跟路徑的!做一名合格的老師是很難的,用心,用法!
最後,祝福你生活愉快,事業有成!!!
『捌』 高中數學概念教學方法有哪些啊誰歸納了嗎
一、在體驗數學概念產生的過程中認識概念. 數學概念的引入,應從實際出發,創設情景,提出問題.通過與概念有明顯聯系、直觀性強的例子,使學生在對具體問題的體驗中感知概念,形成感性認識,通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性.本節課的引入藉助多媒體課件播放「神舟」六號運行軌跡,油灌車的截面輪廓線這些有明顯聯系、直觀性強的生活實例,讓學生對橢圓有了充分的感性認識,引發學生聯想日常生活中類似橢圓型的事物,如雞蛋、西瓜等,進而引發學生討論雞蛋、西瓜是否為橢圓的問題,使學生對即將學習的橢圓內容產生了濃厚的興趣。二、在知識的「最近發展區」引入概念.數學中有許多概念都有著密切的聯系,如何在新舊概念之間聯系的基礎上掌握概念,蘇聯教育家維果茨基「最近發展區理論」,為尋找這樣的聯系提供了有力的理論依據.最近發展區理論認為,教師的教學活動應該在學生的現有發展水平上,激發和啟動學生一系列的內部發展過程,讓學生通過自己的努力思考,完成相對其現有知識水平而言更高層次的知識水平.這種知識水平是經過學生的努力可以達到的.同時,皮亞傑關於建構主義的基本觀點指出:學生是在與周圍環境相互作用的過程中,逐步建構起關於外部世界的知識,從而使自身認知結構得到發展的.學生與環境的相互作用涉及兩個基本過程:「同化」與「順應」.同化和順應,是學習者認知結構發生變化的兩種途徑或方式.同化是認知結構的量變,而順應則是認知結構的質變.同化-順應-同化-順應……循環往復,平衡-不平衡-平衡-不平衡,相互交替,人的認知水平的發展,就是這樣的一個過程.學習不是簡單的信息積累,更重要的是包含新。舊知識經驗的沖突,以及由此而引發的認知結構的重組.學習過程不是簡單的信息輸入、存儲和提取,是新舊知識經驗之間的雙向的相互作用過程,也就是學習者與學習環境之間互動的過程.本節課在橢圓的概念引入時,正是基於這些理念.教師讓學生回顧「圓的形成」,並且用一根線在黑板上演示圓的形成過程:一條線段繞著一個端點旋轉一周所形成的圖形.然後由兩位學生合作在黑板上演示橢圓的形成過程,同時讓學生認真觀察,比較「圓的形成」與「橢圓的形成」之間的不同之處:「圓的形成」依靠一個「定點」和一個「定長」,「橢圓的形成」則需要兩個「定點」和兩條線段和的「定長」來實現,這樣學生在「圓的形成」的基礎上再向上「跳一跳」就摘到了「橢圓的形成」這棵「桃子」.接著利用多媒體演示橢圓的形成中,對「定長」的探討,使學生理解當「定長」大於兩「定點」間的距離是才能畫出橢圓,當「定長」等於兩「定點」間的距離時的圖形是線段,而當「定長」小於兩「定點」間的距離時無法畫圖形的.在此基礎上由學生來敘述橢圓的定義:「平面內與兩個定點F1、F2的距離的和等於常數的。