導航:首頁 > 教學教案 > 高中數學數列教案

高中數學數列教案

發布時間:2020-12-16 19:15:57

1. 有沒有完整的高中數學教案

一、《集合與函數》

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。

復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。

函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;

正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。

兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;

求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。

冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,

奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

二、《三角函數》

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;

三、《不等式》

解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。

證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。

四、《數列》

等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。

數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,

取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:

首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。

五、《復數》

虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。

對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。

代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。

一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。

利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,

兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。

六、《排列、組合、二項式定理》

加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。

兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。

排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。

關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。

七、《立體幾何》

點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。

異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。

八、《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。

笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。

四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。

解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

數學 必修1
1. 集合
(約4課時)

(1)集合的含義與表示

①通過實例,了解集合的含義,體會元素與集合的「屬於」關系。

②能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

(2)集合間的基本關系

①理解集合之間包含與相等的含義,能識別給定集合的子集。

②在具體情境中,了解全集與空集的含義。

(3)集合的基本運算

①理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。

②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。

③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

2. 函數概念與基本初等函數I
(約32課時)

(1)函數

①進一步體會函數是描述變數之間的依賴關系的重要數學模型,在此基礎上學慣用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。

②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。

③了解簡單的分段函數,並能簡單應用。

④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。

⑤學會運用函數圖象理解和研究函數的性質(參見例1)。

(2)指數函數

①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。

②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。

③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。

④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型(參見例2)。

(3)對數函數

①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。

②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。

③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。

(4)冪函數

通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。

(5)函數與方程

①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。

②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。

(6)函數模型及其應用

①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。

②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。

(7)實習作業

根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,採取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。具體要求參見數學文化的要求。

數學 必修2
1. 立體幾何初步
(約18課時)

(1)空間幾何體

①利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。

②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。

③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。

④完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。

⑤了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。

(2)點、線、面之間的位置關系

①藉助長方體模型,在直觀認識和理解空間點、線、面的位置關系的基礎上,抽象出空間線、面位置關系的定義,並了解如下可以作為推理依據的公理和定理。

◆公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內。

◆公理2:過不在一條直線上的三點,有且只有一個平面。

◆公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。

◆公理4:平行於同一條直線的兩條直線平行。

◆定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。

②以立體幾何的上述定義、公理和定理為出發點,通過直觀感知、操作確認、思辨論證,認識和理解空間中線面平行、垂直的有關性質與判定。

操作確認,歸納出以下判定定理。

◆平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。

◆一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。

◆一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。

◆一個平面過另一個平面的垂線,則兩個平面垂直。

操作確認,歸納出以下性質定理,並加以證明。

◆一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。

◆兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。

◆垂直於同一個平面的兩條直線平行。

◆兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。

③能運用已獲得的結論證明一些空間位置關系的簡單命題。

2. 平面解析幾何初步
(約18課時)

(1)直線與方程

①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。

②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。

③能根據斜率判定兩條直線平行或垂直。

④根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。

⑤能用解方程組的方法求兩直線的交點坐標。

⑥探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

(2)圓與方程

①回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。

②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。

③能用直線和圓的方程解決一些簡單的問題。

(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。

(4)空間直角坐標系

①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。

②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。

數學 必修3
1. 演算法初步
(約12課時)

(1)演算法的含義、程序框圖

①通過對解決具體問題過程與步驟的分析(如二元一次方程組求解等問題),體會演算法的思想,了解演算法的含義。

②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。

(2)基本演算法語句:經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本演算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會演算法的基本思想。

(3)通過閱讀中國古代數學中的演算法案例,體會中國古代數學對世界數學發展的貢獻。

2. 統計
(約16課時)

(1)隨機抽樣

①能從現實生活或其他學科中提出具有一定價值的統計問題。

②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。

③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。

④能通過試驗、查閱資料、設計調查問卷等方法收集數據。

(2)用樣本估計總體

①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會它們各自的特點。

②通過實例理解樣本數據標准差的意義和作用,學會計算數據標准差。

③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特徵(如平均數、標准差),並作出合理的解釋。

④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特徵估計總體的基本數字特徵;初步體會樣本頻率分布和數字特徵的隨機性。

⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。

⑥形成對數據處理過程進行初步評價的意識。

(3)變數的相關性

①通過收集現實問題中兩個有關聯變數的數據作出散點圖,並利用散點圖直觀認識變數間的相關關系。

②經歷用不同估算方法描述兩個變數線性相關的過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程(參見例2)。

3. 概率
(約8課時)

(1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。

(2)通過實例,了解兩個互斥事件的概率加法公式。

(3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。

(4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。

(5)通過閱讀材料,了解人類認識隨機現象的過程。

數學 必修4
1. 三角函數
(約16課時)

(1)任意角、弧度

了解任意角的概念和弧度制,能進行弧度與角度的互化。

(2)三角函數

①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。

②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。

③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。

④理解同角三角函數的基本關系式:

⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。

⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。

2. 平面向量
(約12課時)

(1)平面向量的實際背景及基本概念

通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。

(2)向量的線性運算

①掌握向量加、減法的運算,並理解其幾何意義。

②掌握向量數乘的運算,並理解其幾何意義,以及兩個向量共線的含義。

③了解向量的線性運算性質及其幾何意義。

(3)平面向量的基本定理及坐標表示

①了解平面向量的基本定理及其意義。

②掌握平面向量的正交分解及其坐標表示。

③會用坐標表示平面向量的加、減與數乘運算。

④理解用坐標表示的平面向量共線的條件。

(4)平面向量的數量積

①通過物理中「功」等實例,理解平面向量數量積的含義及其物理意義。

②體會平面向量的數量積與向量投影的關系。

③掌握數量積的坐標表達式,會進行平面向量數量積的運算。

④能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

(5)向量的應用

經歷用向量方法解決某些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,發展運算能力和解決實際問題的能力。

3. 三角恆等變換
(約8課時)

(1)經歷用向量的數量積推導出兩角差的餘弦公式的過程,進一步體會向量方法的作用。

(2)能從兩角差的餘弦公式導出兩角和與差的正弦、餘弦、正切公式,二倍角的正弦、餘弦、正切公式,了解它們的內在聯系。

(3)能運用上述公式進行簡單的恆等變換(包括引導導出積化和差、和差化積、半形公式,但不要求記憶)。

數學 必修5
1. 解三角形
(約8課時)

(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題。

(2)能夠運用正弦定理、餘弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題。

2. 數列
(約12課時)

(1)數列的概念和簡單表示法

了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式),了解數列是一種特殊函數。

(2)等差數列、等比數列

①理解等差數列、等比數列的概念。

②探索並掌握等差數列、等比數列的通項公式與前n項和的公式。

③能在具體的問題情境中,發現數列的等差關系或等比關系,並能用有關知識解決相應的問題(參見例1)。

④體會等差數列、等比數列與一次函數、指數函數的關系。

3. 不等式
(約16課時)

(1)不等關系

感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。

(2)一元二次不等式

①經歷從實際情境中抽象出一元二次不等式模型的過程。

②通過函數圖象了解一元二次不等式與相應函數、方程的聯系。

③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

(3)二元一次不等式組與簡單線性規劃問題

①從實際情境中抽象出二元一次不等式組。

②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組(參見例2)。

③從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決(參見例3)。

(4)基本不等式: 。

①探索並了解基本不等式的證明過程。

②會用基本不等式解決簡單的最大(小)值問題(參見例4)。

函數的性質 指數和對數

(1)定義域、值域、對應法則

(2)單調性

對於任意x1,x2∈D

若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數

若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數

(3)奇偶性

對於函數f(x)的定義域內的任一x,若f(-x)=f(x),稱f(x)是偶函數

若f(-x)=-f(x),稱f(x)是奇函數

(4)周期性

對於函數f(x)的定義域內的任一x,若存在常數T,使得f(x+T)=f(x),則稱f(x)是周期函數 (1)分數指數冪

還有選修的
不夠字數
到時候再弄給你

2. 高一數學數列

不用花100來懸賞,推薦使用學霸君,或者作業幫。

3. 求高一數學的數列的教案

資源信息表
標 題: 7.1(1)數列(數列及通項)
關鍵詞: 數列、通項
描 述: 教學目標
1.理解數列的概念、表示、分類等;
2.了解數列與函數之間的關系;
3.理解數列的通項公式,會用數列的通項公式寫出數列的項;會根據較簡單數列的前幾項寫出數列的一個通項公式;
4.培養認真觀察的習慣,初步形成從特殊到一般的歸納和猜想能力.
教學重點與難點
1.理解數列的概念;
2.根據數列的前幾項抽象、歸納出數列的通項公式.
學 科: 高二年級>數學第一冊>7.1(1) 語 種: 漢語
媒體格式: 教學設計.doc 學習者: 學生
資源類型: 文本類素材 教育類型: 高中教育>高中二年級
作 者: 袁建平 單 位: 上海市建平中學
地 址: 浦東新區崮山路517號(200135)
Email: [email protected]

7.1 (1)數列(數列及通項)

上海市建平中學 袁建平

一、教學內容分析
本小節的重點是數列的概念.在由日常生活中的具體事例引出數列的定義時,要注意抓住關鍵詞「次序」,准確理解其概念,還應讓學生了解數列可以看作以正整數集(或它的有限子集)為定義的函數 ,使學生能在函數的觀點下理解數列的概念,這里要特別注意分析數列中項的「序號 」與這一項「 」的對應關系(函數關系),這對數列的後續學習很重要.
本小節的難點是能根據數列的前幾項抽象歸納出一些簡單數列的通項公式.要循序漸進的引導學生分析歸納「序號 」與「 」的對應關系,並從中抽象出與其對應的關系式.突破難點的關鍵是掌握數列的概念及理解數列與函數的關系,需注意的是,與函數的解析式一樣,不是所有的數列都有通項公式;
給出數列的有限項,其通項公式也並不唯一,如給出數列的前 項,若 ,則 都是數列的通項公式,教學上只要求能寫出數列的一個通項公式即可.
二、教學目標設計
理解數列的概念、表示、分類、通項等,了解數列與函數的關系 ,掌握數列的通項公式,能用通項公式寫出數列的任意一項,對於比較簡單的數列,會根據其前幾項寫出它的一個通項公式.發展和培養學生從特殊到一般的歸納能力,提高觀察、抽象的能力.
三、教學重點及難點
理解數列的概念;能根據一些數列的前幾項抽象、歸納出數列的通項公式.
四、教學流程設計

五、教學過程設計
一、復習回顧
思考並回答問題: 函數的定義
二、講授新課
1、概念引入
請同學們觀察下面的例子,看看它們有什麼共同特點:(課本p5)
① 食品罐頭從上到下排列成七層的罐頭數依次為:
3,6,9,12,15,18,21
② 延齡草、野玫瑰、大波斯菊、金盞花、紫宛花、雛菊花的花瓣數從少到多依次排成一列數:3,5,8,13,21,34
③ 的不足近似值按精確度要求從低到高排成一列數:
1,1.7,1.73,1.732,1.7320,1.73205,
④ -2的1次冪,2次冪,3次冪,4次冪 依次排成一列數:
-2,4,-8,16,
⑤ 無窮多個1排成一列數:1,1,1,1,1,
⑥ 謝爾賓斯基三角形中白色三角形的個數,按面積大小,從大到小依次排列成的一列數:1,3,9,27,81,
⑦ 依次按計算器出現的隨機數:0.098,0.264,0.085,0.956
由學生回答上面各例子的共同特點:它們均是一列數,它們是有一定次序的,由此引出數列及有關定義:
1、定義:按一定次序排列起來的一列數叫做數列.
其中,數列中的每一個數叫做這個數列的項,各項依次叫做這個數列的第1項(首項),第2項,第3項 ,第 項,
數列的一般形式可以寫成:

簡記作
2、函數觀點:數列可以看作以正整數集 (或它的有限子集)為定義域的函數 ,當自變數按照從小到大的 順序依次取值時,所對應的一列函數值
3、數列的分類:
有窮數列: 項數有限的數列 (如數列①、②、⑦)
無窮數列:項數無限的數列 (如數列③、④、⑤、⑥)
4、數列的通項:
如果數列 的第 項 與 之間可以用一個公式 來表示,那麼這個公式就叫做這個數列的通項公式.
啟發學生練習找上面各數列的通項公式:
數列① :
數列④:
數列⑤: (常數數列)
數列⑥:
指出(由學生思考得到)數列的通項公式不一定都能由觀察法寫出(如數列②);數列並不都有通項公式(如數列③、⑦);由數列的有限項歸納出的通項公式不一定唯一 (如數列①的通項還可以寫為:
5、數列的圖像:請同學練習畫出數列①的圖像,得出其特點:數列的圖像都是一群孤立的點
2、例題精析
例1:根據下面的通項公式,寫出數列的前5項:(課本P6)
(1) ;
(2)
解:(1)前5項分別為:
(2)前5項分別為:
[說明]由數列通項公式的定義可知,只要將通項公式中 依次取1,2,3,4,5,即可得到數列的前5項.
例2:寫出下面數列的一個通項公式,使它前面的4項分別是下列各數:
(1)1,5,9,13;
(2)
(3)
解:(1)
(2)
(3)
[說明]:認真觀察各數列所給出的項,尋求各項與其項數的關系,歸納其規律,抽象出其通項公式.
例3:觀察下列數列的構成規律,寫出數列的一個通項公式(補充題)
(1)
(2)9,99,999,9999,
(3)
(4)2,0,2,0,2,0,
解:(1)
(2)
(3) 可寫成

(4) 2=1+1,0=1-1
(或 ,
或 )
[說明] 本例的(2)-(4)說明了對數列項的一般分拆變形技巧.
例4、根據圖7-5中的圖形及相應的點數,寫出點數的一個通項公式 : (課本P7)

解:
[說明] 本類「圖形分析」題,解題關鍵在於正確把握圖形依次演變的規律,再依點數寫出它的通項公式
三、鞏固練習
練習7.1(1)
四、課堂小結
本節課學習了數列的概念,要注意數列與數集的區別,數列中的數是按一定次序排列的,而數集中的元素沒有次序;
本節課的難點是數列的通項公式,要會根據數列的通項公式求其任意一項,並會根據數列的一些項由觀察法寫出一些簡單數列的一個通項公式.
五、課後作業
1.書面作業:課本習題7.1 A組 習題1.----5
2.思考題:(補充題及備選題)
1.有下面四個結論,正確的是(C)
①數列的通項公式是唯一的;
②每個數列都有通項公式;
③數列可以看作是一個定義在正整數集上的函數
④在直角坐標系中,數列的圖象是一群孤立的點
A、①②③④ B、③ C、④ D、③④
2.若一數列為: ,則 是這個數列的(B)
A、第6項 B 、第7項 C、第8項 D、第9項
3.數列7,9,11,13,… 2n-1 中,項的個數為(C)
A、 B 、2 -1 C、 -3 D、 -4
4.已知數列的通項公式為:
,它的前四項依次為____________
解:前四項依次為:
5.試分別給出滿足下列條件的無窮數列 的一個通項公式
(1)對一切正整數n,
(2)對一切正整數n,
解:(1) (不唯一)
(2) 等(不唯一)
6.寫出下列數列的一個通項公式
(1)
(2)3,8,15,24,35,…
(3)
(4)0,0.3,0.33,0.333,0.3333,…
(5)1,0,-1,0,1,0,-1,0,…
解:(1) ;
(2)
(3)
(4)
(5)
7.根據下面的圖像及相應的點數,寫出點數的一個通項 公式:

解:以中間點為參照點,把增加的點作為方向點來分析,有:
第1個圖形有一個方向,點數為1點;
第2個圖形有2個方向,點數為1+2 1=3點;
第3個圖形有3個方向,點數為1+3.2=7點;
第4個圖形有4個方向,點數為1+4 3=13點;
…………
第n個圖形有n個方向,點數 點

六、教學設計說明
本節課為概念課,按照「發現式」教學法進行設計
結合一些具體的例子,引導學生認真觀察各數列的特點,逐步發現其規律,進而抽象、歸納出其通項公式
例題設計主要含以下二個題型:
(1) 由數列的通項公式,寫出數列的任意一項;
(2) 給出數列的若干項,觀察、歸納出數列的一個通項公式
補充的思考題,可作為學有餘力的同學的能力訓練題,也可作為教師的備選題.

4. 求高中數學選修4-3:數列與差分專題的相關教材,教案、課件、說課稿之類的都行,謝謝,有的話,發我一份。

可以按課本的版本到教材出版社網站下載電子教材和教案

5. (高中數學「數列的綜合問題」教學研究). 請寫出《數列求和復習課》的教學設計。

建議看些文庫裡面的PPT。

閱讀全文

與高中數學數列教案相關的資料

熱點內容
北京高中作文耐心 瀏覽:59
變作文600字初中 瀏覽:660
2011台州中考語文 瀏覽:250
識字一的教案 瀏覽:85
語文作業本凡卡答案 瀏覽:619
300書信作文大全 瀏覽:227
蘇教版五年級語文下冊補充成語ppt 瀏覽:891
愛的方式作文開頭結尾 瀏覽:694
端午節的作文600字初中 瀏覽:70
3年級上冊語文作業本答案 瀏覽:265
高考語文與小學的聯系 瀏覽:965
2015北京語文中考答案 瀏覽:979
雙分點地步法教學 瀏覽:714
小學二年級作文輔導課 瀏覽:693
關於成功條件的作文素材 瀏覽:848
建軍節作文的結尾 瀏覽:88
五年級下冊語文mp3在線收聽 瀏覽:696
ie教案6 瀏覽:907
三年級語文培優補差計劃 瀏覽:679
二胡獨奏一枝花教學 瀏覽:525