Ⅰ @五年級數學第四解方程的教案哪有
解簡易方程
第一課時 方程的意義
教學內容:數學書P53-54及「做一做」,練習十一1-3題。
教學目標:
1、初步理解方程的意義,會判斷一個式子是否是方程。
2、會按要求用方程表示出數量關系。
3、培養學生觀察、比較、分析概括的能力。
教學重難點:會用方程的意義去判斷一個式子是否是方程。
教具准備:天平、空水杯、水(可根據實際變換為其它實物)
教學過程:
一、導入新課:
今天我們上課要用到一種重要的稱量工具,它是什麼呢?對,它是天平。天平由天平稱與砝碼組成,當放在兩端托盤的物體的質量相等時,天平的指針就會在標尺中間,表示天平平衡,根據這個原理,從而稱出物體的質量。
二、新知學習
1、實物演示,引出方程。
在天平一邊放上兩個50克的砝碼,一邊放一個100克的砝碼,問:現在天平是什麼狀態?
大家能不能用式子來表示這種情況?試試著。[板書:50+50=100]
50+50=100是個什麼式子?(等式)
那麼這次咱們再來操作一次天平:第一步,稱出一隻空杯子重100克,板書:1隻空杯子=100克;
第二步,往往空杯子里倒入約150毫升水(可在水中滴幾滴紅墨水),問:發現了什麼?天平出現了傾斜,因為杯子和水的質量加起來比100克重,現在還需要增加砝碼的質量。
第三步,增加100克砝碼,發現了什麼?杯子和水比200克重。現在,水有多重,知道嗎?如果將水設為x克,那麼用一個式子該怎麼表示杯子和水比200克重這個關系呢?100+x>200。
第四步,再增加100克砝碼,天平往砝碼這邊傾斜。問:哪邊重些?怎樣用式子表示?讓學生得出:100+x<300.
第五步,把一個100克的砝碼換成50克,天平出現平衡。現在兩邊的質量怎樣?用式子怎樣表示?讓學生得出:100+x=250。
比一比100+X=250和原來學習的50+50=100以及上面兩個式子有什麼不同?
師小結:與第一個式子比含有未知數,與另兩個式子比它是等式。
像100+X=250這樣含有求知數的等式,人們給它起了個名字,你們知道叫什麼嗎?對,叫方程。請大家試著寫出一個方程。
1、寫方程,加深對方程的認識。
學生試著寫出各種各樣的方程,再在全班展示,當然也有可能會出現一些不是方程的式子,教師應引導學生說出它不是方程的原因。
看書第54頁,看書上列出的一些方程,讓學生讀一讀。然後小結:一個式子要是方程需要具備哪些條件?兩個條件,一要是等式,二要含有求知數(即字母),這也是判斷一個式子是不是方程的依據。
1、反饋練習。
完成做一做,在是方程的式子後面打上「√」。對於不是方程的幾個式子要說明其理由。
2、小結:這節課學習了什麼?怎麼判斷一個式子是不是方程?
提問:方程是不是等式?等式一定是方程嗎?
看「課外閱讀」,了解有關方程產生的數學史。
四:練習
1、完成練習十一第2題,先讓學生說出圖意,再根據圖意再列出相應的方程。
2、獨立完成第3題,評講時,介紹什麼叫數量關系要,然後讓學生先說出各幅圖中的數量關系,再說出相應的方程,同一幅圖由於數量關系有不同的形式,因此方程形式也可能不同。
五、作業:練習十一第1題。
板書設計: 方程的意義
50+50=100 等式
1隻空杯子=100克 100+X>200 100+X<300
100+X=250 含有未知數的等式稱為方程
教學小記:
為突顯方程的意義,在例題前增加了用天平演示50+50=100的過程。別看小小的一處改動且用時不多,但卻為本課的教學增輝不少。當黑板上出現了4個式子後,我引導學生將100+X=250與上面三個式子比較,有什麼不同?通過對比觀察,促使學生主動發現了50+50=100雖然是等式,卻不含有未知數,而100+X>200、100+X<300雖然含有未知數,卻是不等式,從而明確一個式子如果是方程必須同時具備兩個條件,教學效果非常好。
但在作業中如何看圖列方程還需加強指導。如教材62頁第3題就有許多學生列出了將X單獨放在等式一邊的方程。這里教師不僅要向學生說明列方程解決問題時的常規要求,還要在比較不同方程的數量關系中使學生發現按順向思維列的方程最容易理解。
學生質疑:在列方程解決實際問題是,學生問「40—28=X既含有未知數又是等式,為什麼不能這樣列方程呢?」作為教師該如何回答更准確呢?
第二課時
教學內容:數學書P55-56及「做一做」。
教學目標:
1、通過天平演示保持平衡的幾種變換情況,讓學生初步認識等式的基本性質。
2、利用觀察天平保持平衡所發現的規律能直接判斷天平變化後能否保持平衡。
3、培養學生觀察與概括、比較與分析的能力。
教學重點:理解,並能用自己的話來闡述天平保持平衡的幾種變換情況,進而發現等式保持不變的規律。
教學難點:初步認識等式的基本性質。
教具准備:掛圖。
教學過程:
一、導入新課:
同學們用天平做過實驗嗎?今天我們就要用天平去發現一些重要的規律,有信心嗎?
二、新知探究
(一)探尋發現「天平保持平衡的規律1」。
第一步,出示天平,左盤放一茶壺,右盤放兩茶杯,天平保持平衡。問:這說明什麼?如果設一把茶壺重a克,1個茶杯重b克,則可以用一個等式來表示:即a=2b(板),
第二步,問:想一想,怎樣變換能使天平仍然保持平衡呢?待學生思考片刻,進而問:往兩邊各放一個茶杯,天平會發生什麼變化?教師演示加以驗證,在已平衡的天平兩邊同時增加一個相同的杯子,天平保持平衡。這個過程可以表示為a+b=2b+b 。
第三步,問:如果兩邊各放上2個茶杯,天平還保持平衡?兩邊各放上同樣的一個茶壺呢?學生回答後,老師一一演示驗證。
第四步,想一想,怎樣變換能使天平保持平衡?天平兩邊增加同樣的物品,天平保持平衡。如果天平兩邊減少同樣的物品,天平會保持平衡嗎?
第五步,展示數學書P55頁第2幅圖的場景,觀察掛圖,如果設一個花盆的質量為A,1個花瓶的質量為B,那麼這幅圖可以怎樣表示?板書:A+B=4B
如果兩邊都拿掉1個花瓶,天平還平衡嗎?上面的過程可以怎樣表示?板書:A+B-B=4B-B。
因此天平保持平衡的規律概括起來可以怎麼說?天平兩邊增加或減少同樣的物品,天平會保持平衡。(課件)
(二)探尋發現「天平保持平衡的規律2」。
第一步,出示天平,左盤放一瓶墨水,右盤放兩個鉛筆盒,天平保持平衡。一瓶墨水等於兩個鉛筆盒的質量,如果設一瓶墨水重c克,1個鉛筆盒重d克,則可以用一個等式來表示:即c=2d(板),
第二步,問:想一想,如果在左邊再放上1瓶墨水,右邊再放上2個鉛筆盒,天平還保持平衡嗎?驗證,天平兩邊加的東西不同,數量也不同,為什麼還能保持平衡呢?學生可能會說,因為兩邊增加的質量相同,肯定;同時引導,天平左邊的質量在原來的基礎上發生了什麼變化?(擴大了2倍),右邊呢?(也擴大了兩倍)因此,天平兩邊盡管所增加的東西不同,數量不同,但兩邊質量所發生的變化是相同的,都擴大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。
第三步,剛才的演示反過來,就是天平兩邊同時縮小相同的倍數,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在兩邊同時增加或減少同樣的物品會保持平衡外,還可怎麼變換也可以保持平衡?歸納得出:天平兩邊物品的質量同時擴大或縮小相同的倍數,天平保持平衡。
第四步,進一步驗證,出示P56的情景,問要求1個排球和幾個皮球同樣重該怎麼辦?兩邊質量同時縮小2倍,即把兩邊的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出結論:1個排球和3個皮球同樣重。
(三)小結天平保持平衡的變換規律,引出等式不變的規律。
通過剛才的實驗,我們發現了什麼,誰來總結一下。
得出天平保持平衡的變換規律:(1)天平兩邊同時增加或減少同樣的物品,天平保持平衡;(2)天平兩邊的質量同時擴大或縮小相同的倍數,天平保持平衡。
老師引導:我們可以發現,天平保持平衡時可以用一個等式來表示,當天平兩邊發生變化時,等式的兩邊也在發生變化,天平保持平衡,等式也保持不變。從天平保持平衡的規律,我們可以發現等式保持不變的規律嗎?想一想,四人小組討論。
交流,發現:等式保持不變的規律:(1)等式兩邊都加上或減去相同的數,等式保持不變;(2)等式兩邊都乘或除以相同的數(0除外),等式不變。
三、練習。
三、練習。
1、畫圖
(1)第一幅圖:天平平衡。左邊有一個長方體盒子和2個正方體盒子,右邊有5個小正方體盒子。
第二幅圖:天平左邊有一個長方體盒子,右邊打?號,請學生畫圖。
(2)第一幅圖:天平平衡。左邊有一個圓,右邊有三個三角形。
第二幅圖:天平左邊有三個圓,右邊打?號,請學生畫圖。
2、填空並說明理由。
(1)X+3=5
X+3-3=5( )
(2)5X=20
5X÷5=20( )
(3)X-6=76
X-6+6=76( )
(4)X÷11=3
X÷11×11=3( )
四:小結:有什麼收獲?還有什麼問題?
教學反思:
作為常規課,今天既沒有課件、也沒用天平、僅用4張掛圖和一塊小黑板,但教學效果一樣的棒,學生在課堂中十分投入,且整體掌握情況非常好。
從課前預習情況來看,「天平保持平衡的規律1」學生理解起來較容易,但如何順利過渡到難度相對較大的「天平保持平衡的規律2」呢?我在此處精心設計了過渡語, 「剛才咱們是在天平的兩邊同時增加或減少同樣的物品,如果這次天平兩邊增加或減少的不是同樣的物品,又該怎樣才能使天平保持不變呢?請大家認真觀察、努力思考,比一比誰的腦子靈,能發現其中的奧妙。」這樣通過言語提醒學生注意規律1與規律2兩者在變化中的區別,同時也提請所有學生注意觀察與思考。這里,教師與學生的對話語言使教學環節不再支離破碎,教師與學生的對話語言使教學觀察思考的指向性更明確,教學與學生的對話語言使學生的注意力高度集中。
第三課時
教學內容:數學書P57、58頁例1及「做一做」中相關部分練習,練習十一第4題、第5題(前兩排)、第6題(第一排)、第7題(第一排)。
教學目標:
1、結合具體圖例能根據題目找到等量關系列出方程。
2、會根據等式不變的規律解形如X±a=b的方程,掌握解方程的格式和寫法。
3、會檢驗一個具體的值是不是方程的解,掌握檢驗的格式。
4、結合具體題目,讓學生初步理解方程的解與解方程的含義。
5、進一步提高學生比較、分析的能力。
教學重點:會解形如X±a=b的方程,並檢驗。
教學難點:理解形如X±a=b的方程原理,掌握正確的解方程格式及檢驗方法。
教學過程:
一、導入新課
上一節課,我們學習了什麼?
等式在哪些情況下變換仍然保持不變呢?
學習這些規律有什麼用呢?從這節課開始我們就會逐漸發現到它的重要作用了。
二、新知學習
1、教學例1
出示例1,從圖中可以獲取哪些數學信息?圖中表示了什麼樣的等量關系?能用一個方程來表示這一等量關系嗎?得到x+3=9
X是多少方程的左右兩邊才相等呢?也就是求盒子中一共有多少個皮球。學生先自己思考,再在小組里討論交流,並把各種方法記錄下來。
全班交流。可能有以下四種思路:
(1)利用加減法的關系:9-3=6。
(2)想6+3=9,所以X=6。
(3)把9分成6+3,想X+3=6+3,所以X=6。
(4)利用等式的基本性質,從方程兩邊同時減去一個3,左右兩邊仍然相等。就能得出X=6。
對於這些不同的方法,分別予以肯定。說明第(4)種用到了等式的性質,是解方程的方法之一,所以要重點掌握。
誰再來回顧一下我們是怎樣解方程的?
師板書:x+3-3=9-3
化簡,即得:x=6
問:左右兩邊同時減去的為什麼是3,而不是其它數呢?因為,兩邊減去3以後,左邊剛好剩下一個x,這樣,右邊就剛好是x的值。因此,解方程說得實際一點就是通過等式的變換,如何使方程的一邊只剩下一個x即可。
追問:x=6帶不帶單位呢?讓學生明白x在這里只代表一個數值,因此不帶單位。
2、認識、區別方程的解和解方程。
像這樣,使方程左右兩邊相等的未知知數的值,叫做方程的解,剛才,x=6就是方程X+3=9的解。
而求方程的解的過程叫做解方程。剛才,我們板書的過程就是求方程解的過程就是解方程。
這兩個概念說起來差不多,但它們的意義卻大不相同,它們之間的區別是什麼呢?(方程的解是一個具體的數值,而解方程是一個過程,方程的解是解方程的目的。)
3、檢驗的方法及格式。
怎麼判斷X=3是不是方程的解呢,還需要驗算。怎樣驗算呢?(將x=3代入方程之中看左右兩邊是否相等)
師示範書寫格式:方程左邊=x+6
=3+6
=9
=方程右邊
所以,x=3是方程的解。
用同樣的方法檢驗x=2是不是方程的解。
小結:通過剛才解方程的過程,我們知道了在方程的左右兩邊同時減去一個相同的數,左右兩邊仍然相等。不過需要注意的是,在書寫的過程中寫的都是等式,而不是遞等式。
三、鞏固練習:
獨立完成P59頁做一做第1題第一幅圖。第2題第1排。
四、小結:通過這節課學到了什麼?還有什麼問題?
教學小記:
今天我對課時安排及教學設計均做了較大調整。原訂計劃是第三課時完成「方程的解」及「解方程」概念教學,要求學生掌握方程檢驗的書寫格式,第四課時完成加、減、乘、除各類型方程解法的教學。調整後的教案改為第三課時完成「方程的解」及「解方程」概念教學、會解形如X±A=B的方程,掌握檢驗的格式;第四課時只完成乘除法方程的解法。其次對於教學設計也做了相應處理,將57頁的內容適時穿插到了例1的學習過程之中。
為什麼我會做如此改動呢?主要基於以下三點原因:1、考慮到學生一節課內如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規范書寫格式,內容太多,怕影響教學效果。2、教材57頁做一做中要求學生檢驗方程的解是否正確,但規范的檢驗格式卻不在本頁,而在58頁。3、如果能將「解方程」與「方程的解」這兩個概念結合規范的解方程書寫過程和結果來向學生解釋,更利於學生理解掌握。
根據以往教學經驗,知道解方程的書寫格式是一大難點,所以在前天晚上就在腦子中開始醞釀如何用兒歌幫助學生突破難點。今天上課一試,效果確實不同凡響。兒歌如下:
解方程首先要寫「解」,
X每步都不能離,
所有的等號要對齊,
檢驗的習慣要牢記。
按調整後的教案實施教學,效果比較理想。不僅一節課內完成了預訂的教學任務,而且學生作業質量較高,僅一人書寫格式有誤,一人方法掌握不牢。
第四課時
教學內容:數學書P59例2及「做一做」,練習十一第5-7題。
教學目標:
1、利用等式的基本性質,學會解形如ax=b及x÷a=b方程的解,初步學會a-x=b及a÷x=b方程的解。
2、初步學會如何利用方程來解決實際問題,進一步提高分析數量關系的能力。
3、培養學生認真書寫、仔細檢驗的良好習慣。
教學重點:會解形如ax=b或x÷a=b方程的解。
教學難點:初步學會解形如a-x=b及a÷x=b方程的解。
教學過程:
一、回顧導入
解方程,並進行驗算(指名板演,集體核對)
X+1.9=10 X—1.9=10
二、新知學習(教學例2)
利用等式不變的規律,我們再來解一個方程。
出示方程:3x=18,怎樣才能求到1個x是多少呢?同桌的同學互相討論,如有問題,可以出示書上的示意圖幫助分析。
抽答,在方程兩邊同時除以3即可。為什麼兩邊同時除以的是3,而不是其它數呢?剛好把左邊變成1個x。讓學生打開書59頁,把例2中的解題過程補充完整。
展示、訂正。
要求學生驗算。
通過剛才的學習,我們知道了在方程的兩邊同時乘或除以相同的數(0除外),方程左右兩邊仍然相等。這是我們解方程常用的兩種方法,想不想用它們來試一試呢?
三、反饋練習
1、基本練習:
(1)完成「做一做」第1題第(2)小題,先找到等量關系,再列方程,解方程。集體評講。
(2)思考「想一想」:如果方程兩邊同時加上或乘上一個數,左右兩邊還相等嗎?依據是什麼?等式保持不變的規律。
(3)完成「做一做」第2題第二排三道小題。(強調驗算)
2、拓展練習:
17—X=15 21÷X=3
指名學生介紹自己的解法,重點引導學生根據等式的基本性質解答。
17-X=15 21÷X=3
解:17-X+X=15+X 解21÷X×X=3X
15+X=17 3X=21
15+X—15=17—15 3X÷3=21÷3
X=2 X=7
[課堂記錄:以第一題為例,學生中普遍的解法是根據加減法各部分之間的關系解答,X=17—15,X=2。當我提出要求必須根據等式的基本性質解答後,學生想到的方法是17—X—15=15—15,2—X=0,所以X=2,因為只有相同的兩個數相減,差為0。最後,全班僅一名學生(魏紫瑞)在獨立探索後想出上述方法]
[課後思考:其實學生的第二種方法既運用了等式的基本性質,也與教材中一般是等式兩邊同時加、減、乘、除同一個數(0除外)的方法一脈相承,不失為一種值得推薦的好方法。可惜,今天這「妙招」卻被我平淡的評價語言給埋沒了。 ]
四、課堂小結:這節課學習了什麼?
五、作業:練習十一5—7題。
因為地方不夠了,後面的沒法復制了,你看一下那個網址好嗎
Ⅱ 小學四年級解方程教案
教案一:
方程 教學目標: 1、認識方程。
2、會用方程表示簡單情景中的等量關系。
教學重點:怎樣建立等量關系。
教學難點:理解等號兩邊分別表示什麼含義。
教 法:自主探究法、發現法。
學 法:討論法,小組合作 教具准備:天平(8個)、小黑板 。
教學課時:1課時
教學過程: 一、情景導入 同學們玩過蹺蹺板嗎,如果兩個小朋友的重量一樣,會出現什麼情況?對,這就是平衡,今天我們就用到一種稱量的工 具——天平,天平由天平秤和砝碼組成,當放在兩端托盤的物體重量相等時,托盤就會平衡,請同學們觀察自己組的天 平。產生質疑,引入新課。
二、探究新知,交流自學情況 (一)讀課本66頁,相信你可以完成下面各題。 1、天平左邊的托盤里是( ),右邊的托盤是( ),天平的指針在中間,說明天平平衡了,那麼兩邊( )我可 以用這樣說( )+( )=( ),用x表示櫻桃的質量,那麼是( ) 2、4塊月餅的質量一共是380 克,我可以這樣說( )×( )=( ),用y表示每塊月餅的質量,那麼( ) 3、一個裝有2000毫升水的鋁壺可以倒滿2個熱水瓶和1個水杯,我可以這樣說( )+( )=( )用z表示熱水瓶 的盛水量,那麼( )
(二)、小組展示成果, 探究目標一:方程的意義 上面的等式的共同點( ),什麼叫做方程? 組內交流、解疑、個別匯報、老師點撥。 三、點撥升華 含有未知數的等式叫做方程,方程是等式,但等式不一定是方程。獨立思索小組交流總結方法教師點撥。
四、達標檢測
1、用方程表示下面的數量關系 (1)x的1.5倍除以1.2,商是0.25. (2)從30里減x的2倍,差是14. (3)50減去5的差,再加上4個x,結果是61. (4 )x個2與x的5倍的和等於x的一半.
2、完成89頁練一練第1、2題。 先獨立做,最後組內交流。
五、課堂總結 通過本節課學習你有什麼收獲或有什麼不明白的地方? 先小組內說一說,最後班上交流。
六、拓展提高 一列火車從甲地開往乙地,每小時行50千米,開了3小時到達乙地,甲乙兩地相距x千米,甲乙兩地的路程是( ) 先獨立做,最後組內交流。
七、作業設計:完成相關配套練習 板書設計
教案二:
教學目標:
1、使學生理解並掌握等式、方程、解方程和方程的解的意義。
2、學會檢驗方程的解。
3、培養學生的邏輯思維能力。
教學重點:掌握概念。
教學難點:掌握檢驗書寫格式。
教學准備:投影、小黑板。
教學過程:
一、情境興趣
1、(小黑板)在下面的括弧中填入「>」「<」或「=」。
24×5()25×454+6()6078÷3()78×3
50×18()5×18031-3×5()1623×9+1()23×10
程序:
A、先口答什麼號。
B、(板書如下)把這6個算式分成兩類,應該怎麼分?
24×5>25×454+6=60
78÷3<78×350×18=5×180
23×9+1<23×1031-3×5=16
得出概念:(板書)用「=」連接,表示左右兩邊相等的式子,叫做等式。那麼這些左右兩邊不相等的式子,當然就叫不等式了。
2、(投影製成復合片)下列式子中有幾個等式?
45×2<1009999-9991=87=6+1
X+18=2034+5×7240÷X=10
程序:
A、說出哪些是等式後,揭去不是等式的式子。
B、(板書)把這四個等式分成兩類,你認為應該怎麼分?
X+18=2040÷X=10
得出概念:(板書)含有未知數的等式叫做方程。(突出兩個條件:含有未知數、等式。)
3、(投影)下面哪些是方程?哪些不是方程?(手勢表示)
35-X=1284÷12=74-X>3269+X=24×564=X+60X÷5
4、(板書)方程中的不知數X等於多少我們能把它求出來嗎?比如上面的例子:X+18=2040÷X=10中X等於多少?(板書解出來)得出:(板書)使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。
5、(書面練習)判斷哪個是方程的解?P22練一練3。
6、我們以前學習的求未知數X的值其實就是解方程。怎麼解方程大家會不會呀?我們再學一點大家不會的,哪就是寫出解方程的檢驗過程,寫檢驗過程有它特殊的格式,我們應認真學好。(板書上面其中一題的檢驗過程)
「檢驗:用X=4代入原方程,
左邊=40÷4=10,右邊=10。
左邊=右邊,
所以4是原方程的解。」(注意講清各個步驟的含義)
三、反饋矯正
1、(板演)P22試一試。
2、(課堂作業)P22練一練2。(注意:寫出檢驗過程)
3、(小黑板)看圖列出方程並求解。(內容同《作業本》P19D3)。
四、評價激勵
1、小結:本節課我們學習了「等式、方程、方程的解、解方程」四個概念,(復述概念)並掌握了檢驗的書寫格式。
Ⅲ 誰有簡易方程初步認識說課稿
解簡易方程說課稿
今天我上的這節課的內容是人教版九年義務教育六年制小學數學第九冊第四章第二節內容。
下面我從教材分析、教學方法、學法指導、過程分析等四個方面簡述我對本節課的設計。
一、教材分析
1、教材的地位與作用
本節課是解簡易方程的第一課時,是在學生學習的四則運算及四則運算各部分間的關系和學生已具有的初步的代數知識(如:用字母表示數,求未知數x)的基礎上進行教學。而今天學習的內容又為後面學習解方程和列方程解應用題做准備。今後學習分數應用題、幾何初步知識、比和比例等內容時都要直接運用。所以本節課起著一個承上啟下的作用,是教材中必不可少的組成部分,是一個非常重要的基礎知識,所以它又是本章的重點內容之一。
2、教學目標的確定
根據學生已有的認知基礎和教材的地位與作用,參照課標確定本節課的目標:
⑴使學生初步理解方程、方程解和解方程的意義,了解方程解和解方程的區別。
⑵理解方程與等式的關系,掌握解方程的一般步驟。
⑶培養學生的觀察、抽象、概括能力。
3、教學重點、難點、關鍵點
根據教材內容和教學目標,我認為本節課的重難點是方程的意義及方程解等概念,解決重難點的關鍵是幫助學生從形象的平衡中認識抽象的等量,結合具體例子加深學生對概念的理解。 二、教學方法
本節課的教學對象是小學高年級學生,他們形象思維較好,但抽象思維還需要一個慢慢的訓練過程,所以本節課我使用直觀演示、觀察、比較、啟發引導,講解與學生練習相結合的教學方法,在一連串的環節中充分地調動學生學習的主動性,培養學生良好的學習習慣。為了幫助學生理解,我准備使用天平、掛圖等手段進行輔助教學。
三、學法指導
在教學中,我採用從直觀到抽象,從一般到特殊的方式組織教學,讓學生在觀察、比較中學習,培養學生觀察、抽象、概括能力,和善於思考、善於學習的良好習慣。
四、過程分析
本節課我准備按以下幾個環節進行教學:
1、加強直觀操作,使學生理解方程的含義。
一開始上課,我就直接通過天平演示,使學生利用平衡這一認知基礎去認識等式,理解等式的實質意義,並在此基礎上通過操作、演示,讓學生用含有未知數的式子表示天平平衡關系,從而認識了含有未知數的等式。再出示籃球圖,學生在觀察圖的基礎上,充分利用已有知識,自主用含有未知數的等式表示籃球個數、單價、總價間的關系,有效地豐富了學生對含有未知數的等式的認識和理解。通過對等式的比較,讓學生自主概括出方程的含義,
2、結合實例進行比較,滲透集合思想
在等式與方程的關系的教學中,充分利用黑板上板書的等式和方程,讓學生在認識等式和方程的基礎上,引導學生自主畫圖,用圖來形象直觀地表示等式與方程的關系,從而深化學生對方程本質含義的把握,自然地滲透集合思想。
3、讓學生在感性認識的基礎上,培養學生的概括能力。
在講解方程的解和解方程的意義時,我結合具體的實例,讓學生在感性認識的基礎上引導學生概括它們的含義,有效地促進學生抽象概念能力的培養。
4、範例講解
講解例1解方程時,是根據四則運算各部分之間的關系來求解,這樣充分利用了學生已有的知識基礎,又可以加深對加、減法之間、乘除法之間相互關系的理解,學生容易接受。教學時,我讓學生自己說出推想過程,一邊板書,一邊指出解題步驟和書寫格式,然後著重講解檢驗的方法及書寫格式,並根據課本上的「注意」強調說明雖然不要求每題都寫出檢驗,但都要口算進行檢驗,使學生養成良好的學習習慣。
5、 本節課我准備安排兩次鞏固練習。當學生了解了方程的意義和方程與等式的關系後,我讓學生完成第97頁「做一做」,目的是通過判斷進一步加深學生對方程意義的理解。教學例1後,我讓學生分組完成例1後面「做一做」,其目的是通過練習,鞏固新知,掌握好書寫格式以及檢驗方法。
6、小結
小結的目的是強化重點,鞏固新知,培養學生良好的學習習慣。
Ⅳ 小學解方程復習教案
教學內容:
人教版小學數學教材五年級上冊第113頁第3題及相關練習。
教學目標:
(一)知識與技能
讓學生進一步認識用字母表示數的意義,體會代數的思想;會解方程,進一步明確方程、解方程和方程的解等概念;會用列方程的方法解決問題。
(二)過程與方法
能用等式的基本性質解簡易方程,體會化歸思想。
(三)情感態度與價值觀
進一步培養學生根據具體情況,靈活選擇演算法的意識和能力以及縝密的思維方法。
目標解析:簡易方程的復習分為三部分:用字母表示數、解簡易方程、列方程解決問題。本學期是學生首次正式學習代數知識,這些代數知識對於學生將來進一步的學習有著重要的作用。復習時要結合等式的性質使學生進一步鞏固解方程的方法。列方程解決問題的復習重點是讓學生理解題中的數量關系,並根據等量關系確定未知量、列出方程、解方程從而解決問題。同時還要鼓勵學生根據自己的理解列方程,以培養學生靈活解題的能力和縝密的思維方法。
教學重點:
解簡易方程,根據等量關系列方程解決問題。
教學難點:
根據等量關系列方程解決問題。
教學准備:
課件。
教學過程:
一、復慣用字母表示數
1.課件出示練習:
你能用含有字母的式子表示下面的數量關系嗎?獨立完成。
(1)的7倍; (2)的5倍加6; (3)5減的差除以3;
(4)200減5個; (5)比7個多2的數;
(6)邊長為的正方形的面積與周長。
2.指名匯報:說說你為什麼這么寫?
讓學生進一步鞏固用字母表示數的知識,同時注意到:數字與字母之間的乘號可以不寫,數字要寫在字母前面,一個數平方的意義與寫法等。
3.學生訂正自己的答案。
【設計意圖】通過習題的練習喚醒學生對用字母表示數的知識的回憶,再通過說一說理由來進一步回顧這一知識需要注意的地方,理解用字母表示數的意義。
二、復習簡易方程
1.誰能說一說什麼叫方程?(含有未知數的等式叫方程。)
2.一個方程必須滿足幾個條件?(兩個條件:既要有未知數,還要是等式,缺一不可。)
3.判斷下面哪些式子是方程?是方程的請解出方程。
(1); (2); (3);
(4); (5)3+5=8。
解析:
(1)有未知數,但不是等式;(2)是方程;(3)是不等式;
(4)有未知數,但不是等式;(5)是等式,但沒有未知數。
學生獨立解方程:。
指名上黑板解方程,其他同學在練習本上完成。
教師評價,幫助學生結合解題進一步認識方程、解方程和方程的解的概念。
【設計意圖】復習簡易方程,首先要了解什麼是方程,通過對概念的理解找到一個方程需要滿足的條件:①含有未知數;②是等式。再通過對具體式子的判斷達到鞏固和靈活運用的目的。學生獨立解方程後教師再進行評價,目的是可以檢驗出學生對所學知識的掌握情況,可以做到有的放矢、有針對性地進行復習,並結合解題的過程來理解「解方程」和「方程的解」的概念。
三、復習列方程解決問題
教師:認識了方程,學會了解方程,接下來我們就可以用方程來解決問題了。
1.根據圖示解決問題:
(1)根據圖意列等量關系:;
(2)讓學生說說是怎麼想的。
(3)解方程。
(4)評價總結。
2.根據題意解決問題:
(1)課件出示教材第113頁第3題第(3)小題,了解題意。
(2)列出等量關系:地球赤道的長度×7+2=光每秒傳播的距離。
(3)列方程解決問題:
解:設地球赤道大約長萬千米。
答:地球赤道大約長4萬千米。
【設計意圖】列方程解決問題,通過兩種方法來進行理解:一種方法是看線段圖列出等量關系,另一種方法是根據文字信息列出等量關系,將方程運用到生活中,讓學生感受用方程解決問題的簡便性。
四、練習鞏固
1.請用字母表示下面的數量關系(課件出示教材第113頁第3題第(1)小題)。
2.解下列方程(課件出示教材第113頁第3題第(2)小題)。
(1)請四名同學板書,每人一題,其他學生在練習本上完成。
(2)學生評價總結。
3.用方程解決問題。
(1)課件出示教材第118頁練習二十五第18題。
解:設現在可以做個毛絨兔。
列出等量關系:後來做毛絨兔的材料=原來准備做毛絨兔的材料,即後來做一個毛絨兔的材料×可做的數量=原來做一個毛絨兔的材料×可做的數量,可得
答:現在可以做190個毛絨兔。
(2)課件出示教材第118頁練習二十五第20題。
這個魚塘的圖形是一個梯形,魚塘的兩條平行的邊分別是這個梯形的上底和下底,求平行線兩岸的寬度即是求這個梯形的高。根據求梯形面積的公式可以列出等量關系:
(上底+下底)×高÷2=梯形面積。
解:設兩岸的寬度為米。
答:兩岸的寬度為47米。
【設計意圖】第1題既練習了用字母表示數的知識,又結合了等量關系來列式;第2題解方程,涵蓋了加、減、乘、除四種情況,可以分別板書將學生常犯的錯誤呈現出來,給學生鞏固和再次反思的機會;第3題用方程解決兩個問題,第(1)題根據不變的量找到等量關系,第(2)題根據面積公式找等量關系,讓學生從不同的角度學會列出含有未知數的等式。
五、全課總結
說說這節課你有什麼收獲?需要注意的問題有哪些?
Ⅳ 急尋一次方程與方程組教案
教案一:初中七年級下學期教學設計-解一元一次方程(一)教案
解一元一次方程(一)
知識技能目標
1.使學生了解一元一次方程的概念,能夠靈活運用方程的變形解一元一次方程;
2.使學生正確運用移項法則和去括弧法則.
過程性目標
1.體會去括弧和移項法則的不同之處;
2.經歷解方程的過程,得出解方程的一般步驟.
教學過程
一、創設情境
上兩堂課討論了一些方程的解法,那麼那些方程究竟是什麼類型的方程呢?先看下面幾個方程:每一行的方程各有什麼特徵?(主要從方程中所含未知數的個數和次數兩方面分析).
4 + x = 7; 3x + 5 = 7-2x; ;
x + y = 10; x + y + z = 6;
x2 - 2x – 3 = 0; x3-1 = 0.
二、探究歸納
比較一下,第一行的方程(即前3個方程)與其餘方程有什麼區別?(學生答)
可以看出,前一行方程的特點是:(1)只含有一個未知數;(2)未知數的次數都是一次的.「元」是指未知數的個數,「次」是指方程中含有未知數的項的最高次數,根據這一命名方法,上面各方程是什麼方程呢?(學生答)
只含有一個未知數,並且含有未知數的式子都是整式,未知數的次數是1,這樣的方程叫做一元一次方程(linear equation with one unknown).
第二行的方程的特點是:每一個方程中的未知數都超過一個;第三行的方程的特點是:每一個方程中的未知數的次數都超過一次,根據一元一次方程的定義可知後四個方程都不是一元一次方程.
注意 談到次數的方程都是指整式方程,即方程的兩邊都是整式.像 這樣就不是一元一次方程.
上兩堂課我們探討的方程都是一元一次方程,並且得出了解一元一次方程的一些步驟.下面我們繼續通過解一元一次方程來探究方程中含有括弧的一元一次方程的解法.
解方程2(x-2)-3(4x-1)=9(1-x).
分析 方程中有括弧,設法先去括弧.
解2x-4-12x + 3 = 9-9x,…………去括弧
-10x-1 =9-9x,……………… 方程兩邊分別合並同類項
-10x + 9x = 1 + 9,……………… 移項
-x =10, ……………………合並同類項
x = -10. ……………………系數化為1
注意 (1)括弧前邊是「-」號,去括弧時,括弧內各項都要變號;
(2)用分配律去括弧時,不要漏乘括弧內的項;
(3) -x =10,不是方程的解,必須把系數化為1,得x = -10,才是結果.
從上面的解方程可知,解含有括弧的一元一次方程的步驟是:
(1)去括弧;
(2)移項;
(3)合並同類項;
(4)系數化為1.
三、實踐應用
例1 解方程:3(x-2)+1 = x-(2x-1).
分析 方程中有括弧,先去括弧,轉化成上節課所講方程的特點,然後再解方程.
解 去括弧
3x-6 + 1 = x-2x + 1,
合並同類項
3x-5 =-x + 1,
移項
3x + x = 1 + 5,
合並同類項
4x = 6,
系數化為1
x = 1.5.
例2 解方程 .
分析 方程中有多重括弧,那麼先去小括弧,再去中括弧,最後去大括弧.
解 去括弧
,
合並同類項
,
去括弧
,
合並同類項
,
去括弧
-12x -3 = 5,
移項
-12x = 8,
系數化為1
.
注 1.本題多次進行了合並同類項和去括弧,解題時根據方程的特點靈活地選擇步驟.
2.也可把全部括弧去掉後,再合並同類項後,解方程.
例3 y取何值時,2(3y + 4)的值比5(2y -7)的值大3?
分析 這樣的題列成方程就是2(3y + 4)-5(2y -7)= 3,求x即可.
解 2(3y + 4)-5(2y -7)= 3,
去括弧
6y + 8-10y + 35 = 3,
合並同類項
-4y + 43 = 3,
移項
-4y = -40,
系數化為1
y = 10.
答:當y =10時,2(3y + 4)的值比5(2y-7)的值大3.
四、交流反饋
解一元一次方程的步驟
(1)去括弧;
(2)移項;
(3)合並同類項;
(4)系數化為1.
注 (1)去括弧是依據去括弧法則和分配律,去括弧時要特別注意括弧外的符號,同時不要漏乘括弧中的項!
(2)去括弧後,若等式兩邊的多項式有同類項,可先合並同類項後再移項,以簡化解題過程.
五、檢測反饋
1.下列方程的解法對不對?如果不對怎樣改正?
解方程:2(x + 3) - 5(1- x) = 3(x - 1)
解 2x + 3 – 5 - 5x = 3x - 3,
2x - 5x – 3x = -3 + 5 - 3,
-6x = -1,
.
2.解下列方程:
;
(2)5(x + 2)= 2(5x -1);
(3)2(x-2)-(4x-1)= 3(1-x);
(4)4x - 3(20 - x) = 6x - 7(9 - x);
(5)3(2y + 1) = 2(1 + y) + 3(y + 3).
3.列方程求解:
(1)當x取何值時,代數式3(2-x)和2(3 + x)的值相等?
(2)當x取何值時,代數式3(2-x)和2(3 + x)的值互為相反數?
4.已知 是方程 的解,求m的值.
教案二:一元一次方程 教學設計
教學設計思想:
本節課教師可以用兩個課時把內容傳授給學生,主要講授的是方程的概念、一元一次方程的概念以及方程的解和解方程。教師通過小學的學過的算式引入到現在要學的方程,通過講授例題引出方程的相關概念,這樣同學在教授新課的同時也提高了學生分析問題的能力。
教學目標:
1.知識與技能:
知道什麼是方程,什麼是一元一次方程;
體會字母表示數的好處,畫示意圖有利於分析問題、找相等關系是列方程的重要一步,從算式到方程(從算式到代數)是數學的一大進步。
2.過程與方法:
會將實際問題抽象為數學問題,通過列方程解決問題;
認識列方程解決問題的思想以及用字母表示未知數、用方程表示相等關系得符號化方法;
能結合具體例子認識一元一次方程的定義,體會設未知數、列方程的過程,會用方程表示簡單實際問題的相等關系。
3.情感、態度與價值觀:
增強用數學的意識,激發學習數學的熱情。
教學重點:
會根據實際問題列出一元一次方程。
教學難點:
會根據實際問題列出一元一次方程。
教學方法:
講授法、引導式。
教具准備:
多媒體。
課時安排:
2課時。
教學過程:
(一)引入
這塊地有多大?
農民賽克斯正在嘀咕,他要支付90元現金以及若干千克小麥種子作為他租賃一塊農田的一年地租.對此,他逢人便說,如果小麥種子的價格為每千克6元的話,這筆開銷相當於每畝56元,但現在小麥的市場價己漲到每千克8元,所以他所付的地租相當於每畝64元.他認為付得太多了.試問:這塊農田有多大?
這是一個方程問題,學習本章知識後,你就會解答.
(二)新授
Ⅰ.方程的概念
問題:小明向小彬詢問年齡,小彬說「我的年齡乘2減5得21」。小明立刻就說出了小彬的年齡,你會嘛?(幻燈片)
師:你會用算式方法解決這個實際問題嗎?試著列出等量關系。
生:等量關系:年齡×2-5=21。
師:上面列出的是算式關系式,現在我們可以引入未知數,也就是用x來代替小彬的年齡。
(板書)可設小彬的年齡為x歲,則:
2x-5=21, (直接估算一下結果得x=13)。
師:列方程時, 要先設字母表示未知數,然後根據問題中的相等關系,寫出含有未知數的等式——方程。
Ⅱ.一元一次方程的概念
先看例題:(幻燈片)
例1 根據下列問題,設未知數並列出方程:
(1)一台計算機已使用1700小時,預計每月再使用150小時,經過多少月這台計算機的使用時間達到規定的檢修時間2450小時?
(2)用一根長24cm的鐵絲圍成一個長方形,使它的長是寬的1.5倍,長方形的長、寬各應是多少?
(3)某校女生佔全體學生數的52%,比男生多80人,這個學校有多少學生?
解:(1)設x月後這台計算機的使用時間達到2450小時,那麼x月里這台計算機使用了150x(即150乘x)小時。
列方程
1700+150x=2450。
(2)設長方形的寬為xcm,那麼長為1.5x cm。
列方程
2(x+1.5x)=24
(3)設這個學校的學生數為x,那麼女生數為0.52x,男生為 (1-0.52)x。
列方程
0.52x-(1-0.52)x=80。
師:上面各方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。
像1700+150x,2(x+1.5x),0.52x,(1-0.52)x.等這樣的式子,可以表示實際問題中的數量關系,例如,0.52x-(1-0.52)x=80在(3)中表示女生數與男生數的差。
歸納:
上面的分析過程可以表示如下:
分析實際問題的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
Ⅲ. 方程的解與解方程
列方程是解決問題的重要方法,利用方程可以解出未知數。
師:從方程1700+150x=2450,你能估算出x的值嗎?
如果x=1,1700+150x的值是:1700+150×1=1850。
如果x=2,1700+150x的值是:1700+150×2=2000。
類似的,我們可以得到下面的表。
x的值 1 2 3 4 5 6 7 …
1700+150x的值 1850 2000 2150 2300 2450 2600 2750 …
總結:解方程就是求出使方程中等號左右兩邊相等的未知數的值;
這個值就是方程的解。
(三)練習
1.3x-1是方程嘛?
2.列式表示a與3的差等於-2。
3.上題中列出的式子是方程嘛?如果是,未知數是什麼?方程的解是什麼?如果不是,說明原因。