❶ 拉伸模的原理
生產工藝條件
流延法生產由於流道長而窄,流動速度快,熔體溫度范圍一般控制在250℃~280℃,流延冷卻輥的溫度控制在20℃~30℃,收卷張力要低,一般在10kg以內,以利粘性劑遷出,同時減少成品膜內應力。
粘性的控制
良好的粘性使貨物外面的包裝膜層與層粘在一起使貨物牢固,粘性的獲取方法主要有兩種:一種是在高聚物里添加PIB或其母料;另一種是摻混VLDPE。PIB為半透明粘稠液體,直接添加需有專用設備或對設備進行改造,一般均採用PIB母料。PIB的遷出有個過程,一般要三天,另外還受溫度影響,氣溫高時粘性強;氣溫低時不太粘,經拉伸後粘性大大降低。也因此成品膜最好貯存在一定的溫度范圍內(建議貯存溫度在15℃~25℃)。摻混VLDPE,粘性稍差,但對設備沒有特殊要求,粘性相對穩定,不受時間控制,但也受溫度影響,氣溫高於30℃時相對較粘,低於15℃時粘性稍差,可通過調節粘層LLDPE的量,以達到所需的粘度。三層共擠多採用這種方法。
物理機械性能的控制
高的透明度有利於貨物的識別;高的縱向伸長率有利於預拉伸,且節省材料消耗;良好的穿刺性能及橫向撕裂強度允許薄膜在高拉伸倍率下遇到貨物尖銳的角或邊不斷裂;高的屈服點使包裝後的貨物更緊固。
流延法生產的膜透明度高,這里不著重討論。隨著材料共聚單體C原子個數的增加,支鏈長度增加,結晶度降低,生成的共聚物「纏繞或扭結」效應增加,所以伸長率提高,穿刺強度及撕裂強度也都提高。而MPE是高立構規整聚合物,分子量分布很窄,可以准確控制聚合物的物理性能,所以在性能上又有進一步的提高;又由於MPE分子量分布窄,加工范圍也窄,加工條件難以控制,通常添加5%的LDPE,以降低熔體粘度,增加薄膜的平整度。
MPE的價格也高,為了降低成本,通常採用MPE與C4-LLDPE搭配使用,但並非所有的C4-LLDPE都能與之搭配,應有所選擇。機用拉伸膜多採用C6、C8材料,容易加工,能滿足各種包裝要求。手工包裝由於拉伸倍率低,多採用C4材料。
材料密度也影響著薄膜的性能。隨著密度的增加,取向度提高,平整度好,縱向伸長率提高,屈服強度提高,但橫向撕裂強度、穿刺強度及透光率均下降,所以綜合各方面的性能,往往在非粘層添加適量的中密度線性聚乙烯(LMDPE)。添加LMDPE還可以降低非粘層的摩擦系數,避免包裝好的托盤與托盤粘連。
冷卻輥溫度的影響。冷卻輥溫度升高,屈服強度提高,但其餘性能下降,所以一般冷卻I輥的溫度控制在20℃~30℃為宜。流延線的張力影響薄膜的平整度及收卷松緊度,若使用PIB或其母料作為粘層,還影響PIB的遷出,降低薄膜最終的粘度。張力一般不大於10kg,太大了應力殘存於膜卷內,使伸長率等性能下降,容易造成斷膜現象。拉伸膜的應用形式
拉伸膜的應用領域很廣,主要是與托盤配合使用,對零散商品進行整集包裝,代替小型集裝箱。由於它可降低批量貨物運輸包裝成本30%以上,因而被廣泛應用於五金、礦產、化工、醫葯、食品、機械等多種產品的整集包裝上;在倉庫貯存領域,國外也較多地利用拉伸纏繞膜托盤包裝進行立體貯運,以節省空間和佔地。主要使用形式如下:
密封包裝
這種包裝類似於收縮膜包裝,膜繞著托盤把托盤全包起來,然後兩個熱抓子把兩端的膜熱封在一起。這是纏繞膜最早的使用形式,並由此發展了更多的包裝形式
全寬包裝
這種包裝要求膜寬足夠覆蓋托盤,托盤的形狀規則,所以使用起來有它的,適合薄膜厚度為17~35μm
手工包裝
這種包裝是纏繞膜包裝中最簡單的一種,膜裝在一個架上或由手持,由托盤轉動或膜繞托盤轉。主要用在包好的托盤破損後的重新包裝,及普通的托盤包裝。這種包裝速度慢,適合的薄膜厚度為15~20μm;
托盤機械包裝
這是一種最普遍最廣泛的機械包裝形式,由托盤旋轉或膜繞托盤旋轉,薄膜固定在支架上可上下移動。這種包裝能力很大,每小時約15~18盤。
❷ 杯蓋拉深模具設計教程
一、坯料計算:用面積法
二、拉深次數計算:08F薄板,第一次拉延0.6-0.65D(開料尺寸)第二次拉延0.76-0.8d(首次拉延直徑)
這些設計教程可以去書店買點書來看一看,模具設計除了理論知識外,更重要的還是工作實戰經驗。
❸ 什麼是拉伸模
纏繞膜,又叫拉伸膜(stretch fllm),採用進口線性聚乙烯LLDPE樹脂及增粘劑特種助劑比例配方生產。 國內最早以PVC為基材,DOA為增塑劑兼起自粘作用生產PVC纏繞膜。由於環保問題、成本高(相對PE比重大,單位包裝面積少)、拉伸性差等原因,當1994~1995年國內開始生產PE拉伸膜時逐步被淘汰。PE拉伸膜先是以EVA為自粘材料,但其成本高,又有味道,後發展用PIB、VLDPE為自粘材料,基材現在以LLDPE為方,包括C4、C6、C8及茂金屬PE(MPE)。 早期LLDPE拉伸膜以吹膜為多,從單層發展到二層、三層;現在以流延法生產LLDPE拉伸膜為主,其流程見下圖,這是因為流延線生產具有厚薄均勻、透明度高等優點,可適用於高倍率預拉伸的要求。由於單層流延做不到單面粘,應用領域受到局限。單、雙層流延在材料選擇上沒有三層流延的廣,配方成本也高,所以還是以三層共擠的結構較為理想。優質的拉伸膜應具有透明度高,縱向伸長率高,屈服點高,橫向撕裂強度高,穿刺性能好等特點。
http://ke..com/view/1922637.htm?fr=ala0_1
可到以上網址詳閱~!
❹ 拉伸模具的製作工序
易拉罐是由三種不同成分的鋁合金組成,罐體、罐蓋、拉環。鋁質是制罐的關鍵,罐體不成形、罐蓋口拉不開都是鋁質的問題。在國內開模具沒有問題。下面是製造工藝,希望對你有所幫助。 罐體製造工藝和技術 : 罐體製造工藝流程 CCB-1A型罐罐體的主要製造工藝流程如下:卷料輸送→卷料潤滑→落料、拉伸→罐體成形→修邊→清洗/烘乾→堆垛/卸→塗底色→烘乾→彩印→底塗→烘乾→內噴塗→內烘乾→罐口潤滑→縮頸→旋壓縮頸。 在工藝流程中,落料、拉伸、罐體成形、修邊、縮徑、旋壓縮徑/翻邊工序需要模具加工,其中以落料、拉伸和罐體成形工序與模具最為關鍵,其工藝水平及模具設計製造水平的高低,直接影響易拉罐的質量和生產成本。 罐體製造工藝分析 (1)落料一拉伸復合工序。拉伸時,坯料邊緣的材料沿著徑向形成杯,因此在塑性流動區域的單元體為雙向受壓,單向受拉的三向應力狀態,如圖1所示。由於受凸模圓弧和拉伸凹模圓弧的作用,杯下部壁厚約減薄10%,而杯口增厚約25%。杯轉角處的圓弧大小對後續工序(罐體成形)有較大的影響,若控制不好,易產生斷罐。因此落料拉伸工序必須考慮以下因素:杯的直徑和拉伸比、凸模圓弧、拉伸凹模圓弧、凸、凹模間隙、鋁材的機械性能、模具表面的摩擦性能、材料表面的潤滑、拉伸速度、突耳率等。突耳的產生主要由2個因素確定:一是金屬材料的性能,二是拉伸模具的設計。突耳出現在杯的最高點同時也是最薄點,將會對罐體成形帶來影響,造成修邊不全,廢品率增高。基於以上分析,確定拉伸工序選擇的拉伸比m=36.55%,坯料直徑Dp=140.20±0.0lmm,杯直徑Dc=88.95mm。 (2)罐體成形工序。 變薄拉伸工藝分析。典型的鋁罐拉伸、變薄拉伸過程如圖2所示,變薄拉伸過程中受力狀況如圖3所示。 在拉伸過程中,集中在凹模口內錐形部分的金屬是變形區,而傳力區則為通過凹模後的筒壁及殼體底部。在變形區,材料處於軸向受拉、切向受壓、徑向受壓的三向應力狀態,金屬在三向應力的作用下,晶粒細化,強度增加,伴有加工硬化的產生。在傳力區,各部分材料受力狀況是不相同的,其中位於凸模圓角區域的金屬受力情況最為惡劣,其在軸向、切向兩向受拉,徑向受壓,因而材料的減薄趨勢嚴重,金屬易從此處發生斷裂,從而導致拉伸失敗。比較變形區和傳力區金屬的應力狀態可知:變薄拉伸工藝能否順利進行主要取決於拉伸凸模圓角部位的金屬所受拉應力的大小,當拉應力超過材料強度極限時就會引起斷裂,否則拉伸工藝可以順利進行。因此,減小拉伸過程中的拉應力成為保證拉伸順利進行的關鍵。變薄拉伸拉伸比的選擇為:再拉伸:25.7%,第1次變薄拉伸:20%~25%,第2次變薄拉伸:23%~28%,第3次變薄拉伸:35%~40%。 在成形過程中,影響金屬內部所受拉應力大小的因素很多,其中凹模錐角。的取值直接關繫到變形區金屬的流動特性,進而影響拉伸所需成形力的大小,所以,其數值合理與否對工藝的實施有著重要影響。當α較小時,變形區的范圍比較大,金屬易於流動,網格的畸變小。隨著α的增大,變形區的范圍減小,金屬的變形集中,流動阻力增大,網格歧變嚴重。而且,隨著凹模錐角的增大,變形區材料的應變相應增加,這說明凹模錐角較大時,不僅金屬的變形范圍集中,而且變形量迅速上升,因而使得變形區金屬的加工硬化現象加劇,導致金屬內部的應力上升,從而對拉伸產生不利影響。另一方面,在α過於大或過小時都會引起拉伸力的增加,其原因在於:當α過大時,金屬流動急劇,材料的加工硬化效應顯著,並且隨著錐角的增大,凹模錐面部分產生的阻礙金屬流動的分力加大,因而所需拉伸力增加;當。過小時,雖然金屬流動的轉折小,但由於變形區金屬與凹面的接觸錐面長,錐面上總摩擦阻力大,因此網格畸變雖小,總拉伸力卻增大。 由此可見,凹模錐角的合理確定應同時考慮變形區材料的變形特點以及模具與工件間的摩擦狀況,凹模錐角合理范圍的確定對拉伸工藝有著直接的影響。工藝試驗表明,對於CCB-1A型罐用鋁材3104H19,其凹模錐角合理取值在α=5°-8°為宜。 底部成形工藝分析。罐底部成形發生在凸模行程的終點,採用的是反向再拉伸工藝。圖4為罐底成形受力狀況示意圖,底部成形力主要取決於摩擦力的性質以及壓邊力的大小。通常,材料的厚度和強度是一對矛盾,材料愈薄,強度愈低,因此輕量化技術要求減少罐底直徑及設計特殊的罐底形狀。工藝試驗
www.1wenok.com
❺ 五金沖壓模具拉伸模怎麼調試~
我之前學過這一行。說了你自己看下是不是對的。新做好的模具好的很,但沒有經過安裝好,容易出現好多「次品」 這就需要好好把模具之間的間距調好。我所看到的通用辦法是先上好上模,再安裝下模,下模先不用固定,試著做兩個產品出現,如果沒問題就好了直接緊固起來,反之有問題,找兩片薄鐵片,鋁片墊在下模具的左右兩邊使之平衡。一塊不行漯兩塊,調好了就直接緊固就好了。
❻ 模具 拉伸 高手進!絕對考驗你
什麼材料,多厚?普通可拉成直筒後切邊。條件允許可下橢圓料,逐級一次拉伸,就是一個工位一次成型,一副上模具安排三到四級拉伸。
❼ 沖裁模、拉伸模、彎曲模的區別
一、設計不同
1、沖裁模
在沖壓生產中,沖裁所用的模具稱為沖裁模。沖裁模的主要任務是使材料分離。
2、拉伸模
通常指各種拉制金屬線的模具,還有拉光纖的拉絲模。所有拉絲模的中心都有個一定形狀的孔,圓、方、八角或其它特殊形狀。
3、彎曲模
彎曲模是指將毛坯或半成品製件彎曲成一定形狀的沖模。彎曲模具有它的特點,如凸、凹模除一般動作外,有時還需要作擺動、轉動等動作。彎曲模結構形式應根據彎曲件形狀,精度要求及生產批量等進行選擇。
二、用途不同
1、沖裁模
沖裁模主要用於各種板材的落料與沖孔,模具的工作部位是凸、凹模的刃口,刃口工作時承受沖擊力、剪切力、彎曲力,以及剪切材料的強烈摩擦力,因而對沖裁模的性能要求主要是指對模具刃口的性能要求。
2、拉伸模
拉絲模用途廣泛,如電子器件、雷達、電視、儀表及航天等所用的高精度絲材以及常用的鎢絲、鉬絲、不銹鋼絲、電線電纜絲和各種合金絲都是用金剛石拉絲模拉制出來的,金剛石拉絲模由於採用天然金剛石作原料,從而具有極強的耐磨性,使用壽命極高。
3、彎曲模
應用相當廣泛,如汽車上很多履蓋件,小汽車的櫃架構件,摩托車上把柄,腳支架,單車上的支架構件,把柄,小的如門扣,夾子(鐵夾)等。
三、結構不同
1、沖裁模
1)工藝零件
工藝零件直接參與完成沖壓工藝過程並和坯料直接發生作用。工藝零件包括工作零件,定位零件、壓料、卸料及出件零件。
2)結構零件
結構零件不直接參與完成工藝過程,也不和坯料直接發生作用,只對模具完成工藝過程起保證作用或對模具的功能起完善作用。結構零件包括導向零件、固定零件、緊固及其他零件。
2、拉伸模
拉絲模芯的結構按工作性質可分為「入口區、潤滑區、工作區、定徑區、出口區」五個區間。拉絲模的內徑輪廓很重要,它決定著壓縮線材所需的拉力,並影響拉拔後線材中的殘余應力。
3、彎曲模
彎曲模的結構與一般沖裁模結構相似,分上下兩個部分,它由凸、凹模,定位、卸料、導向及緊固件等組成。
❽ 請問拉伸模具與沖壓模具有什麼分別它們的成型方式有什麼不同之處
拉伸模具也是沖壓模具里多種類型里的其中一種,一般的沖壓模具的工作原理就像用刀切東西,不過模具的刀的形狀是各種各樣的,刀是什麼樣子的,切出來的東西也就是什麼樣子的。拉伸模具的工作方式有點像吹氣球,不過拉伸模工作使用的不是空氣,而是凸模和凹模。將凸模和凹模做成什麼樣的形狀,拉伸出來的零件就是什麼樣子的形狀。拉伸模具主要的工作原理是將所需的材料按照人們需要的形狀發生形變。比如將一塊平板拉伸成桶,碗,盆等。