A. 有沒有完整的高中數學教案
一、《集合與函數》
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
數學 必修1
1. 集合
(約4課時)
(1)集合的含義與表示
①通過實例,了解集合的含義,體會元素與集合的「屬於」關系。
②能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
(2)集合間的基本關系
①理解集合之間包含與相等的含義,能識別給定集合的子集。
②在具體情境中,了解全集與空集的含義。
(3)集合的基本運算
①理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
2. 函數概念與基本初等函數I
(約32課時)
(1)函數
①進一步體會函數是描述變數之間的依賴關系的重要數學模型,在此基礎上學慣用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。
③了解簡單的分段函數,並能簡單應用。
④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
⑤學會運用函數圖象理解和研究函數的性質(參見例1)。
(2)指數函數
①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。
②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。
④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型(參見例2)。
(3)對數函數
①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。
②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。
③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。
(4)冪函數
通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。
(5)函數與方程
①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
(6)函數模型及其應用
①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
(7)實習作業
根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,採取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。具體要求參見數學文化的要求。
數學 必修2
1. 立體幾何初步
(約18課時)
(1)空間幾何體
①利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。
②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。
③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。
④完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。
⑤了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。
(2)點、線、面之間的位置關系
①藉助長方體模型,在直觀認識和理解空間點、線、面的位置關系的基礎上,抽象出空間線、面位置關系的定義,並了解如下可以作為推理依據的公理和定理。
◆公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內。
◆公理2:過不在一條直線上的三點,有且只有一個平面。
◆公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。
◆公理4:平行於同一條直線的兩條直線平行。
◆定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。
②以立體幾何的上述定義、公理和定理為出發點,通過直觀感知、操作確認、思辨論證,認識和理解空間中線面平行、垂直的有關性質與判定。
操作確認,歸納出以下判定定理。
◆平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。
◆一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。
◆一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。
◆一個平面過另一個平面的垂線,則兩個平面垂直。
操作確認,歸納出以下性質定理,並加以證明。
◆一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。
◆兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。
◆垂直於同一個平面的兩條直線平行。
◆兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。
③能運用已獲得的結論證明一些空間位置關系的簡單命題。
2. 平面解析幾何初步
(約18課時)
(1)直線與方程
①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
③能根據斜率判定兩條直線平行或垂直。
④根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
⑤能用解方程組的方法求兩直線的交點坐標。
⑥探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
①回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
③能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。
數學 必修3
1. 演算法初步
(約12課時)
(1)演算法的含義、程序框圖
①通過對解決具體問題過程與步驟的分析(如二元一次方程組求解等問題),體會演算法的思想,了解演算法的含義。
②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。
(2)基本演算法語句:經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本演算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會演算法的基本思想。
(3)通過閱讀中國古代數學中的演算法案例,體會中國古代數學對世界數學發展的貢獻。
2. 統計
(約16課時)
(1)隨機抽樣
①能從現實生活或其他學科中提出具有一定價值的統計問題。
②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。
③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。
④能通過試驗、查閱資料、設計調查問卷等方法收集數據。
(2)用樣本估計總體
①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會它們各自的特點。
②通過實例理解樣本數據標准差的意義和作用,學會計算數據標准差。
③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特徵(如平均數、標准差),並作出合理的解釋。
④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特徵估計總體的基本數字特徵;初步體會樣本頻率分布和數字特徵的隨機性。
⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。
⑥形成對數據處理過程進行初步評價的意識。
(3)變數的相關性
①通過收集現實問題中兩個有關聯變數的數據作出散點圖,並利用散點圖直觀認識變數間的相關關系。
②經歷用不同估算方法描述兩個變數線性相關的過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程(參見例2)。
3. 概率
(約8課時)
(1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。
(2)通過實例,了解兩個互斥事件的概率加法公式。
(3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
(4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認識隨機現象的過程。
數學 必修4
1. 三角函數
(約16課時)
(1)任意角、弧度
了解任意角的概念和弧度制,能進行弧度與角度的互化。
(2)三角函數
①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。
②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。
③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。
④理解同角三角函數的基本關系式:
⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。
⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。
2. 平面向量
(約12課時)
(1)平面向量的實際背景及基本概念
通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。
(2)向量的線性運算
①掌握向量加、減法的運算,並理解其幾何意義。
②掌握向量數乘的運算,並理解其幾何意義,以及兩個向量共線的含義。
③了解向量的線性運算性質及其幾何意義。
(3)平面向量的基本定理及坐標表示
①了解平面向量的基本定理及其意義。
②掌握平面向量的正交分解及其坐標表示。
③會用坐標表示平面向量的加、減與數乘運算。
④理解用坐標表示的平面向量共線的條件。
(4)平面向量的數量積
①通過物理中「功」等實例,理解平面向量數量積的含義及其物理意義。
②體會平面向量的數量積與向量投影的關系。
③掌握數量積的坐標表達式,會進行平面向量數量積的運算。
④能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
(5)向量的應用
經歷用向量方法解決某些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,發展運算能力和解決實際問題的能力。
3. 三角恆等變換
(約8課時)
(1)經歷用向量的數量積推導出兩角差的餘弦公式的過程,進一步體會向量方法的作用。
(2)能從兩角差的餘弦公式導出兩角和與差的正弦、餘弦、正切公式,二倍角的正弦、餘弦、正切公式,了解它們的內在聯系。
(3)能運用上述公式進行簡單的恆等變換(包括引導導出積化和差、和差化積、半形公式,但不要求記憶)。
數學 必修5
1. 解三角形
(約8課時)
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題。
(2)能夠運用正弦定理、餘弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題。
2. 數列
(約12課時)
(1)數列的概念和簡單表示法
了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式),了解數列是一種特殊函數。
(2)等差數列、等比數列
①理解等差數列、等比數列的概念。
②探索並掌握等差數列、等比數列的通項公式與前n項和的公式。
③能在具體的問題情境中,發現數列的等差關系或等比關系,並能用有關知識解決相應的問題(參見例1)。
④體會等差數列、等比數列與一次函數、指數函數的關系。
3. 不等式
(約16課時)
(1)不等關系
感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。
(2)一元二次不等式
①經歷從實際情境中抽象出一元二次不等式模型的過程。
②通過函數圖象了解一元二次不等式與相應函數、方程的聯系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。
(3)二元一次不等式組與簡單線性規劃問題
①從實際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組(參見例2)。
③從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決(參見例3)。
(4)基本不等式: 。
①探索並了解基本不等式的證明過程。
②會用基本不等式解決簡單的最大(小)值問題(參見例4)。
函數的性質 指數和對數
(1)定義域、值域、對應法則
(2)單調性
對於任意x1,x2∈D
若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數
若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數
(3)奇偶性
對於函數f(x)的定義域內的任一x,若f(-x)=f(x),稱f(x)是偶函數
若f(-x)=-f(x),稱f(x)是奇函數
(4)周期性
對於函數f(x)的定義域內的任一x,若存在常數T,使得f(x+T)=f(x),則稱f(x)是周期函數 (1)分數指數冪
還有選修的
不夠字數
到時候再弄給你