❶ 初中數學因式分解
如圖
❷ 誰知道八年級上冊數學因式分解講解的視頻(不帶密碼的)
你分解因式不會的問我 我可以幫你解決
❸ 初中數學因式分解教學視頻鹽誰知道請告訴我。謝謝
http://video..com/v?ct=301989888&rn=20&pn=0&db=0&s=8&word=%D2%F2%CA%BD%B7%D6%BD%E2%BD%CC%D1%A7&fr=ala0
❹ 八年級上冊課本因式分解運用公式法如何講解的教學視頻
教學視頻 不用了
自己找些 參考書(競賽方面的提升 比較好) 的相關專題
上課隨他便
❺ 二元一次方程因式分解法教學視頻
http://www.iqiyi.com/w_19rrd5tumx.html
❻ 求視頻:加速度學習網視頻;因式分解 視頻
;因式分解 視頻
http://video..com/v?ct=301989888&rn=20&pn=0&db=0&s=8&word=%D2%F2%CA%BD%B7%D6%BD%E2%20%CA%D3%C6%B5&fr=ala0
加速度學習網視頻
http://video..com/v?ct=301989888&rn=20&pn=0&db=0&s=8&word=%BC%D3%CB%D9%B6%C8%D1%A7%CF%B0%CA%D3%C6%B5&fr=ala0
❼ 初中的因式分解
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」.
3.公因式的確定:系數的最大公約數•相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最後結果要求每一個因式的首項符號為正;
(5)因式分解的最後結果要求加以整理;
(6)因式分解的最後結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有「 x2+px+q是完全平方式 」.
❽ 初中八年級數學因式分解的幾種方法
提公因式法 ①公因式:各項都含有的公共的因式叫做這個多項式各項的~. ②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的.如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數是正的. 公式法 ①平方差公式:.a^2-b^2=(a+b)(a-b) ②完全平方公式:a^2±2ab+b^2=(a±b)^2 ※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍. 分組分解法分組分解法:把一個多項式分組後,再進行分解因式的方法. 分組分解法必須有明確目的,即分組後,可以直接提公因式或運用公式. 拆項、補項法拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形. ※多項式因式分解的一般步驟: ①如果多項式的各項有公因式,那麼先提公因式; ②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解; ③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解; ④分解因式,必須進行到每一個多項式因式都不能再分解為止。配方法:對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。換元法:有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。待定系數法:首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
❾ 初中因式分解的方法及技巧
1.提取公因式
這個是最基本的.就是有公因式就提出來,這個大家都會,就不多說了
2.完全平方
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
看到式字內有兩個數平方就要注意下了,找找有沒有兩數積的兩倍,有的話就按上面的公式進行.
3.平方差公式
a^2-b^2=(a+b)(a-b)
這個要熟記,因為在配完全平方時有可能會拆添項,如果前面是完全平方,後面又減一個數的話,就可以用平方差公式再進行分解.
4.十字相乘
x^2+(a+b)x+ab=(x+a)(x+b)
這個很實用,但用起來不容易.
在無法用以上的方法進行分解時,可以用下十字相乘法.
例子:x^2+5x+6
首先觀察,有二次項,一次項和常數項,可以採用十字相乘法.
一次項系數為1.所以可以寫成1*1
常數項為6.可以寫成1*6,2*3,-1*-6,-2*-3(小數不提倡)
然後這樣排列
1 - 2
1 - 3
(後面一列的位置可以調換,只要這兩個數的乘積為常數項即可)
然後對角相乘,1*2=2,1*3=3.再把乘積相加.2+3=5,與一次項系數相同(有可能不相等,此時應另做嘗試),所以可一寫為(x+2)(x+3) (此時橫著來就行了)
我再寫幾個式子,樓主再自己琢磨下吧.
x^2-x-2=(x-2)(x+1)
2x^2+5x-12=(2x-3)(x+4)
其實最重要的是自己去運用,以上方法其實可以聯合起來一起用,實踐永遠比別人教要好.
順便告訴你.若一個式子的b^2-4ac小於0的話,這個式子是無論如何也不能分解了(在實數范圍內,b為一次項系數,a為二次項系數,c為常數項)
這些方法一般在最高次為二次時適用!