『壹』 關於各種統計圖有什麼要提醒大家的事項
關於各種統計圖的要體現大家的思想有很多,我等一下發給你,你自己看一下吧。
『貳』 扇形統計圖旁邊那個框是什麼東西
扇形統計圖旁邊那個框是什麼用途?那是材料表吧?那是統計表吧?統計表的一些附屬東西吧!
『叄』 在某一項生產成本的扇形統計圖中,原材料成本所在的扇形的圓心角是180度,則其中原材料成本佔全部生產
180/360×100%=50%
『肆』 如何分析扇形統計圖 (急!5月9號就要交!)
小學數學知識要點
一、意義
1、意義:把搜集的材料經過整理,填寫在一定格式的表格內,用來反
映情況,說明問題。
統計表 2、種類:⑴、單式。
⑵、復式。
1、意義:把統計資料中的數量關系用圖形表達出來,使之具體,給人
印象深刻
統計圖
⑴、條形統計圖:容易看出各種數量的多少:單式、復式。
2、種類: ⑵、折線統計圖:能清楚地表示出數量增減變化的情況:單式、復式。
⑶扇形統計圖:能清楚地表示出各部分數量同總數之間的關系。
二、數
1、小數的網路圖:
純小數 有限小數
小數 無限不循環小數
帶小數 無限小數 純循環小數
無限循環小數
混循環小數
2、整數:
倍數 公倍數 最小公倍數:幾個數公有的倍數叫做這幾個數的公
倍數,其中最小的一個叫做這幾個數
整除 的最小公倍數。
約數 公約數 最大公約數:幾個數公的的約數叫做這幾個數的公
約數,其中最大的一個叫做這幾個數
的最大公約數。
質數 合數 互質數
質因數 分解質因數
能被2.3.5整除的數的特徵
3、 互質數:概念:公約數只有1的兩個數。
⑴、一定互質(①、1和任何自然數;②、相鄰的兩個自然數;
互質數 ③、兩個不同的質數)
⑵、不一定互質(①、一個質數與一個合數;②、兩個不同的合數)
質數:一個數,如果只有1和它本身兩個約數,叫做質數。
合數:一個數,如果除了1和它本身,還有別的約數,叫做合數。
★、一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身;一個數的倍數的個數是無限的,其中最小的倍數是它本身。一個數最小的倍數等於它最大的約數。
★、整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b(b≠0)整除,或b(b≠0)能整除a。這是整除部分知識中最基本的概念。
自然數按能否被2整除的情況,分為奇數、偶數。
自然數按約數的個數分為0、1、質數、合數。
自然數按約數的個數分,0有無限個約數,除以所有自然數(0除外)。
改寫
改寫成分母是10,100,1000,……的分數,再約分。
小數 分數
用分母去除分子
小數點向右移動兩位,添上%
寫成分數形式並約分
去掉%,小數點 先寫成小數
向左移動兩位。 再寫成百分數
百分數
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數,有時還可以根據需要,省略這個數某一位後面的尾數,寫成近似數。
4、比較
分數:分母相同的分數,分子大的分數比較大;分子相同的分數,分母小的分數比較大;分子和分母都不相同,把分數通分後再比較。
數的比較 整數:先看個位上的數,個位上的數大的就大;個位上的數相同,個位上的數大的就大;個位上的數也相同,百位上的數大的就大……
小數:比較兩個小數的大小,先看它們的整數部分,整數部分大的那個數就大,整數部分小的就小;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同,百分位上的數大的那個數就大……
5、數位
整數部分 小數點 小數部分
… … 億 級 萬 級 個 級
數位 … … 千億位 百億位 十億位 億
位 千萬位 百萬位 十萬位 萬
位 千
位 百
位 於
位 個
位
.
十分位 百分位 千分位 …
計數單位 … … 千
億 百
億 十億 億 千萬 百萬 千萬 萬 千 百 十 一(個) . 十分之一 百分之一 千分之一 …
整數和小數都是按照十進制計數法寫出的數,其中個、十、百……以及十分之一、百分之一……都是計數單位。各個計數單位所佔的位置,叫做數位。數位是按一定的順序排列的。
數位:寫數時,按照一定的順序把各個計算單位排列在一定的位置上,各個不同的計數單位所佔的位置叫做數位。
位數:一個整數含有數位的數目叫做位數。(含有一個數位的數叫做一位數)
6、 意義
自然數:我們在數物體的時候,用來表示物體個數的1,2,3,……叫做自然數。一個物體也沒有,用0表示。0也是自然數。自然數都是整數。
分數:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b=a/b(b≠0)
小數:把整數「1」平均分成10份,100份,1000份,……這樣的一份或幾份是十分之幾,百分之幾,千分之幾……可以用小數表示。如:0.1等都是小數。
有限小數:小數的小數部分的位數是有限的,就叫做有限小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。小數部分的位數是無限的,叫做無限小數。循環小數是無限小數。
補充(1)四則運算:在一個沒有括弧的算式里,如果含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先做第二級運算,後做第一級運算。如果在一個有括弧的算式里,要先算小括弧裡面的,再算中括弧裡面的。
注意:計算時要認真審題,看清運算符號和數的特點,靈活選擇合理的計算方法。
三.四則運算
(1)四則運算
數的范圍
運算 意義
名稱 整數 小數 分數 字母表示
加法(一級運算) 把兩個數合並成一個數的運算。 與整數加法的意義相同。 與整數加法的意義相同 a+b=c
減法(一級運算) 己知兩個數的和與其中的一個加數,求另一個加數的運算。 與整數減法的意義相同。 與整數減法的意義相同。 c-b=a
乘法(二級運算) 求幾個相同加數的和的簡便運算。 一個數與小數相乘,可以看作是求這個數的十分之幾、百分之幾……是多少。 一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。 a×b=c
除法(二級運算) 已知兩個數的積與其中一個因數,求另一個因數的運算 與整數除法的意義相同 與整數除法的意義相同。 c÷b=a
減法是加法的逆運算;除法是乘法的逆運算;乘法是加法的同數相加的簡便運算;除法是減法的同數相減的簡便運算。
分成四種:①、同級 ②、兩級 ③、帶括弧 ④、簡便計算
(2)運算定律與簡便演算法
加法交換律:a+b=b+a 加法結合律:a+b+c=a+(b+c)
加減法的速演算法:a-b=a-c-d 、 a+b=a+c+d
減法的性質:a-b-c=a-(b+c) 乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c) 乘法分配律:(a+b) ×c=a×c+b×c
積不變的性質:ab=(a×c)×( b÷c) 除法的性質:a÷b÷c=a÷(b×c)
商不變的性質:a÷b=(a÷c) ÷(b÷c)、 a÷b=(a×c) ÷(b×c)
四、方程
方程:含有未知數的算式叫做方程。
代數:1、用字母表示數可以簡明地表達數量關系,運算定律和計算公式。
2、數與字母相乘,省略乘號,數字寫在字母的前面。(如1a=a×1)
3、字母與字母相乘,可省略乘號,也可以寫成乘號的簡寫法(如a×b=ab=a.b)
4、數與數不能省略乘號。
使方程左右兩邊相等的求知數的值,叫做方程的解。只是一個數。
求方程的解的過程,叫做解方程。只是一個過程。
當n表示任何一個自然數時,2n表示偶數,因為能被2整除。2n+1表示奇數。
方程不是比例,比例是方程。
五、應用題
1、簡單應用題
小學數學中基本的應用題是簡單應用題,各種應用題是在簡單應用題基礎上合成的。
2、復合應用題
一般應用題解題各種步驟(如下)
(1)審題,理解題意(基礎) (2)分析數量關系(關鍵) (3)列式計算(重點)
(4)驗算(正確的保證) (5)寫答句(完整的必須)
簡單應用題四大類:1、總數與部分數的關系。2、大數、小數與相差數的關系。3、一倍數、幾倍數和倍數的關系。4、總數、份數與每份數的關系。11種:⑴求總數。⑵求剩餘。⑶求相同的數的和。⑷平均除。⑸包含除。⑹兩數的相差數。⑺大數比小數多多少。⑻小數比大數少多少。⑼一個數是另一個數的幾倍。⑽求一個數的幾倍是多少。⑾己知一個數和另一個數的幾分之幾,求這個數。
六、比、分數和除法的聯系
前項——分子——被除數 比號——分數線——除號
後項——分母——除數 比值——分數值——商
比是兩個數之間的倍數關系。 分數是一個數。 除法是一種運算。
七、比、比例
兩個數相除又叫做兩個數的比,兩個比相等的式子叫做比例。
比的基本性質:比的前項和後項都乘上或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩內項的積等於兩個外項的積。
求比值和化簡比的不同:求比值是一個商;化簡比是一個比,前項、後項都是整數。
正比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。Y/x=k(一定)
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。x×y=k(一定)
正、反比例的相同點:都有三種量,其中兩種是相關聯的量,另一種是一定的量。一種量的變化,另一種量也隨著變化。
八、方程解與算術解的不同
方程解是順向思維,把求知量當成己知量。算術解是逆向思維。
1、 分數應用題
比較量÷標准量=? /?或?%(求百分率)
「1」的量×所求量的對應分率=所求量
方程解:己知量÷對應分率=「1」的量
九、幾何圖形
1、圖形面積計算公式表
名稱 面積字母計算公式 面積計算公式
長方形 S長=ab 長方形的面積=長×寬
正方形 S正=a2 正方形的面積=邊長×邊長
三角形 S三角=ah÷2 三角形的面積=底×高÷2
平行四邊形 S平行=bh 平行四邊形面積=底×高
梯形 S梯=(a+b)×h÷2 梯形的面積=(上底+下底)×高÷2
圓 S圓=πr2 圓面積=半徑2×圓周率
扇形(半圓) S圓=πr2×n/360 扇形的面積=半徑2×圓周率×n/360
2、 圖形周長計算公式表
名稱 周長字母計算公式 周長計算公式
長方形 C長=(a+b)×2 長方形的周長=(長+寬)×2
正方形 C正=4a 正方形的周長=邊長×4
三角形
平行四邊形 C平行=(a+b)×2 平行四邊形周長=(斜邊+底邊)×2
梯形
圓 C圓=2πr 圓周長=直徑×圓周率
扇形(半圓) C扇=dπ×n/360+2r 扇形周長=直徑×圓周率×n/360+半徑×2
3、 進率
① 長度單位:
1千米=1000米 1千米=10000分米 1千米=100000厘米 1千米=1000000毫米1米=10分米 1米=100厘米 1米=1000毫米 1分米=10厘米
1分米=100毫米 1厘米=10毫米
② 面積單位
1平方千米=100公頃=1000000平方米=100000000平方分米=10000000000平方厘米
1公頃=10000平方米=1000000平方分米=100000000平方厘米
1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米
③ 體積(容積)單位
1立方米=1000立方分米=1000升=1000000立方厘米=1000000毫升
1立方分米=1升=1000立方厘米=1000毫升 1立方厘米=1毫升
④ 質量單位
1噸=1000千克=1000000克 1千克=1000克
⑤ 時間單位
1世紀=100年 1年=12個月=52個星期=365或366天 一年=四個季 1季=3個月
1個月=3旬(上旬 下旬 下旬)1星期=7天 1日=24小時 1時=60分 1分=60秒
12個月中有7個大月,4個小月,1個少月。 大月是1、3、5、7、8、10、12月;小月是4、6、9、11月;少月是2月。 閏年2月有29天,平年2月有28天。
4、 名數
名數:計量的結果,要用數來表示,並且還要帶上單位名稱,通常把它們合起來叫做名數。例如:
數
5米 單名數 復名數 3米3分
單位名稱
名數的改寫:在實際中,同一種量卻不同單位的名數,常常需要進行互相改寫。把高級單位的名數改寫成低級單位的名數用進率去乘,把低級單位的名數改寫成高級單位的名數用進率去除。在名數的改寫中,為了簡便,可以應用移動小數點引起數的大小變化的規律來進行改寫。
5、 角
直線;直線是無限的。
線段:直線上兩點間的一段叫做線段。線段有兩個端點。線段是直線的一部分。
射線:把線段的一端無限延長,就得到一條射線。射線只有一個端點。
角:從一點引出兩條射線所組成的圖形叫做角。這個點叫做角的頂點。這兩條射線叫做角的邊。角通常用符號「∠」來表示。如下圖:
邊
頂點
邊
比較角的大小:先把兩個角的頂點和一條邊重合,然後看另一條邊的位置。哪個角的另一條邊在外面,哪個角就大。如果另一條邊也重合,說明兩個角相等。
角的大小要看兩條邊的大小叉開的越大,角越大。角的大小與角的兩邊畫出的長短沒有關系。
角的度量:角的計量單位是「度」,用符號「°」表示。把半圓分成180等份,每一份所對的角叫做1度的角。記作1°,用量角器量角的時候,把量角器放在角的上面,使量角器的中心和角的頂點重合。0°該度線和角的一條邊重合,角的另一條邊所對的量角器上的刻度,就是這個角的度數。
角的分類:大於0°,而小於90°的角叫做銳角。等於90°的角叫做直角。大於90°而小於180°的角叫做鈍角。角的兩邊成一條直線,等於180°的角叫做平角。一條射線繞它的端點旋轉一周所成為一個360°的角叫做周角。
垂線:兩條線相交成直角時,這兩條線叫做互相垂直,其中一條直線叫做另一條直線的垂線(如下圖1),這兩條直線的交點,叫做垂足。
平行:在同一個平面內永不相交的兩條直線叫做平行線(如下圖2)。也可以說這兩條直線互相平行。
垂直 平行
6、長方形、正方形
長方形與正方形都有四條邊,長方形相對兩條邊長度相等,正方形四條邊都相等。它們都有四個直角。正方形是特殊的長方形。
7、三角形
三角形的分類:三個角都是銳角的三角形叫做銳角三角形;有一個角是直角的三角形叫做直角三角形;有一個角是鈍角的三角形叫做鈍角三角形。
兩條邊相等的三角形叫做等腰三角形。在等腰三角形里,相等的兩條邊叫腰,另一條邊叫做底;兩腰的夾角叫做頂角;底邊上的兩個角叫做底角。
三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形的內角和是180°。兩個完全相同的三角形可以拼成平行四邊形。
8、平行四邊形
兩組對邊分別平行的四邊形叫做平行四邊形。四個角都不是直角。
從平行四邊形的一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,這條對邊叫做平行四邊形的底。
長方形、正方形都是特殊的平行四邊形。
8、梯形
只有一組對邊平行的四邊形叫做梯形。
在梯形里,互相平行的一組對邊叫做梯形的底(通常把較短的底叫做上底,較長的底叫做下底);不平行的一組對邊叫做梯形的腰;從上底的一點到下底引一條垂線,這點和垂足之間的線段叫做梯形的高。
兩腰相等的梯形叫做等腰梯形。
9、圓
圓中心的一點叫做圓心。圓心一般用字母「o」表示。
連接圓心產圓上任意一點的線段叫做半徑。半徑一般用字母「r」表示。
通過圓心並且兩端都圓上的線段叫做直徑。直徑一般用字母「d」表示。
一個圓里有無數條半徑與直徑。所有的直徑和半徑都有相等。直徑是半徑的2倍。半徑是直徑的直徑的1/2。圓心決定圓的位置,半徑決定圓的大小。
圓的周長和直徑的比值叫做圓周率,用字母「π」來表示。
π=3.141592653……
≈3.14
10、扇形、半圓
圓周長中任意兩點的距離叫做「弧」。
一條弧和經過這兩條弧兩端的兩條半徑所圍成的圖形叫做扇形。
兩條半徑之間的角,頂點在圓心。像這樣,頂點在圓心的角叫做圓心角。在同一個圓里,扇形的大小與這個扇形的圓心角有關。
11、軸對稱圖形
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
12、長方體、正方體
兩個面相交的邊叫做棱。三條棱相交的點叫做頂點。
長方體是由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形。在一個長方體中,相對的面完全相同,相對的棱長度相等。長方體有12條棱、8個頂點。相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
正方體是由6個完全相同的正方形圍成的立體圖形。正方體也有12條棱,它們的長度相等。正方體也有8個頂點。
正方體和長方體的面、棱和頂點的數目都一樣。只是正方體的棱長相等。正方體可以說是長、寬、高都相等的長方體,它是一種特殊的長方體。
13、圓柱
圓柱上、下兩個面叫做底面。它們是完全相同的兩個圓。圓柱有無數條高。圓柱有一個曲面,叫做側面。圓柱兩個底面之間的距離叫做高,高也叫長、寬、深。剪開垂線側面,會使它變成長方形,也可能得到正方形。
14、圓錐
圓錐的底面是個圓,圓錐的側面是一個曲面。從圓錐的頂點到底面圓心的距離是圓錐的高h。圓錐只有一個底面,圓錐有一個頂點一條高。圓錐的側面展開是個扇形。
體積計算公式
名稱 體積字母公式 體積公式
長方體 V長方體=a×b×h 長方體體積=長×寬×高
正方體 V長方體=a3 正方體體積=邊長×邊長×邊長
圓柱 V圓柱=πr2×h 圓柱體積=圓周率×半徑2×高
圓錐 V圓錐=1/3πr2×h 圓錐體積=圓周率×半徑2×高×1/3
表面積計算公式
名稱 表面積字母公式 表面積公式
長方體 S長方體=(a×b+a×h+b×h)×2 長方體表面積=(長×寬+長×高+寬×高) ×2
正方體 S正方體=a×a×6 正方體表面積=邊長×邊長×6
圓柱 S圓柱=πr2×2+πd×h 圓柱表面積=圓周率×半徑2×2+直徑×π×高
圓錐
『伍』 電腦上怎麼做扇形統計圖
打開電子表格文件,點擊工具條裡面的「 插入」 菜單 → 圖表 → 選擇 「餅圖」或扇形圖版 → 下一步 → 點擊」數權據區域「輸入框右邊的小方塊 →用滑鼠選中表格中的源數據(就是數據形式的表格,用滑鼠點擊一下表格左上角,按住左鍵不放,拖動滑鼠到表格的右下角,放開滑鼠) → 點擊」源數據「輸入框右邊的小方塊 ,看看是不是你要的圖表類型,如果不是,更改一下」系列產生在: 行 ,列 」選項 → 下一步,完成。如果不滿意圖表的效果,右鍵單擊圖表,選擇「圖表選項」等,進行修改。或者用滑鼠拖放圖表,放在合適的位置上。
『陸』 常用的統計圖有什麼統計圖什麼統計圖和什麼統計圖。
常用的統計圖來有扇形統源計圖,折線統計圖,和條形統計圖,分別的畫圖步驟如下:
1、扇形統計圖,扇形統計圖一般用在百分比比較明確的數據中,可以清楚的看到佔比率。