㈠ 高中數學必修一筆記,謝謝
一
集合與簡易邏輯集合具有四個性質
廣泛性
集合的元素什麼都可以確定性版
集合中的元素必須是確權定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的互異性
集合中的元素必須是互不相等的,一個元素不能重復出現無序性
集合中的元素與順序無關二
函數這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等三
數列這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等四
三角函數三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行五
平面向量這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
㈡ 求數學必修四,第一章三角函數的筆記
sinx=對邊/斜邊。叫正弦,
cosx=鄰邊/斜邊。叫餘弦,
tanx=對邊/鄰邊。叫正切,
還有好多。
㈢ 考研,三角函數關系有哪些需要記
三、充分利用課堂時間。學習成績好的學生很大程度上得益於在課堂上充分利用時間,這版也意味著在權課後少花些功夫。課堂上要及時配合老師,做好筆記來幫助自己記住老師講授的內容,尤其重要的是要積極地獨立思考,跟得上老師的思維。 四、學習要有合理的規律。課堂上做的筆記你要在課後及時復習,不僅要復習老師在課堂上講授的重要內容,還要復習那些你仍感模糊的認識。如果你堅持定期復習筆記和課本,並做一些相關的習題,你定能更深刻地理解這些內容,你的記憶也會保持更久。定期復習能有效地提高你的考試成績。
㈣ 同角三角函數基本關系筆記
同角三角函數的基本關系:
(sinθ)^2 (cosθ)^2=1;
tanθcotθ=sinθcscθ=cosθsecθ=1;
(secθ)^2-(tan^θ)^2=(cscθ)^2-(cosθ)^2=1
二)誘導公式,在360°內的變換(角度制):
取值 sinθ cosθ tanθ
α sinα cosα tanα
-α -sinα cosα -tanα
180 α -sinα -cosα tanα
180-α sinα -cosα -tanα
360 α sinα cosα tanα
360-α -sinα cosα -tanα
90 α cosα -sinα -cotα
90-α cosα sinα cotα
270 α -cosα sinα -cotα
270-α -cosα -sinα cotα
三)兩個角的變換關系,不屬於初中內容:
sin(α β)=sinαcosβ cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ sinαsinβ
以此四個公式為基礎,可推導出其他公式。
㈤ 求推薦學習三角函數入門到熟練運用的教材及方法。
課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就是大量練習題目。基本上每課之後都要做課余練習的題目(不包括老師的作業)。數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此.良好的數學學習習慣包括:聽講、閱讀、探究、作業.聽講:應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記.每堂課結束以後應深思一下進行歸納,做到一課一得.閱讀:閱讀時應仔細推敲,弄懂弄通每一個概念、定理和法則,對於例題應與同類參考書聯系起來一同學習,博採眾長,增長知識,發展思維.探究:要學會思考,在問題解決之後再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結論去發現新問題,經過一段學習,應當將自己的思路整理一下,以形成自己的思維規律.作業:要先復習後作業,先思考再動筆,做會一類題領會一大片,作業要認真、書寫要規范,只有這樣腳踏實地,一步一個腳印,才能學好數學.總之,在學習數學的過程中,要認識到數學的重要性,充分發揮自己的主觀能動性,從小的細節注意起,養成良好的數學學習習慣,進而培養思考問題、分析問題和解決問題的能力,最終把數學學好.
總之,是個積累的過程,你了解的越多,學習就越好,所以多記憶,選擇自己的方法。祝學習成功!
㈥ 高中數學必修四:三角函數。求這章學習方法。
首先要瀏覽目錄,將所有之知識要點看一遍。
之後,要把主要公式記下來。再把書後的例題仔細看一遍,最好是自己先做,做完再看答案。這個很重要。書上的題都很好,只要把書上的題都搞懂了,問題就不大了。
㈦ 自學初中三角函數買什麼書好
如果只是學習初中的直角三角函數的話,還是用教科書比較好(因為內容內比較少且簡單),如果容要用教輔資料的話,現在書店賣的都可以,比如說《教材完全解讀》《教材全解》《五三》等。
如果你更願意學習多一些知識的話,建議你直接去自學任意角的三角函數(雖然中考不會考到這么深入),像類似於《教材幫》《狀元筆記》等教輔資料都很不錯的
㈧ 求三角函數的有關公式,越詳細越好,最好是筆記。
倒數關系:
α ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常針對不同條件的常用的兩個公式
sin^2(α)+cos^2(α)=1
tan α *cot α=1
一個特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
證明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
坡度公式
我們通常半坡面的鉛直高度h與水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
即 i=h / l, 坡度的一般形式寫成 l : m 形式,如i=1:5.如果把坡面與水平面的夾角記作
a(叫做坡角),那麼 i=h/l=tan a.
銳角三角函數公式
正弦: sin α=∠α的對邊/∠α 的斜邊
餘弦:cos α=∠α的鄰邊/∠α的斜邊
正切:tan α=∠α的對邊/∠α的鄰邊
餘切:cot α=∠α的鄰邊/∠α的對邊
二倍角公式
正弦
sin2A=2sinA·cosA
餘弦
1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推導
sin(3a)
=sin(a+2a)
=sin2acosa+cos2asina
=2sina(1-sin²a)+(1-2sin²a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-cos^a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)^2]
=4cosa(cos²a-cos²30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
現列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可別輕視這些字元,它們在數學學習中會起到重要作用.包括一些圖像問題和函數問題中
三倍角公式
sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
半形公式
sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
萬能公式
sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]
其他