❶ 我现在小学生 初中要来考试了 绍兴的 求几道 奥数题 难的简单的 都要 还有 语文卷最可能考什么
小升初经典奥数题,你看看吧。
1、甲、乙、丙都在读同一本书,书中有100个故事。每个人都按照顺序从某一个故事开始往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙都读过的故事至少有多少个?
首先我们可以先看其中两个人,比如甲、乙,为了保证两人都读过的尽量少,那么首先两人尽量读的不一样,那么两人都读过的至少有75+60-100=35个,那么丙还有读52个故事,首先他读的尽量不和这35个故事相同,但是又要连在一起,所以他读的尽量和甲读的相同,所以至少有52-(75-35)=12个是都读过的故事。
2、我国有"三山五岳"之说,其中五岳是指:东岳泰山、南岳衡山、西岳华山、北岳恒山和中岳嵩山,一位老师拿着这五座山岳的图片,并在图片上标出数字,他让五位学生来辨别,每人说出两个,学生回答如下:甲:2是嵩山,3是华山, 乙:4是衡山,2是嵩山, 丙:1是衡山,5是恒山, 丁:4是恒山,3是嵩山, 戊:2是华山,5是泰山。
老师发现五个学生都只是说对了一半,那么正确的说法应该是什么呢?
解答:
假设甲的前半句正确,后半句错误,则2是泰山,3不是华山;因为每人都说对了半句,错了半句,因此可以推出戊说的前半句错误,后半句正确,即2不是华山,5是泰山。这就与甲说的"2是泰山"产生矛盾,所以假设错误。
因此我们可以知道,甲说的前半句错误,后半句正确,即3是华山;由戊说的可知,2不是华山,5是泰山;由丙说的可知,5不是泰山,1是衡山;由乙所说的可知,4不是衡山,2是嵩山;由丁所说的可知,3不是嵩山,4是恒山,所以正确的说法是:1是衡山,2是嵩山,3是华山,4是衡山,5是泰山。
3、证明 + + + +…+ 在 与 之间。
分析】 ×10= < + + + +…+ < ×10=
×11= < + +…+ < ×11=
4、六位数 是6的倍数,这样的六位数有多少个?
解 因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。由六位数能被2整除,推知A可取0,2,4,6,8这五个值。再由六位数能被3整除,推知 3+A+B+A+B+A=3+3A+2B
能被3整除,故2B能被3整除。B可取0,3,6,9这4个值。由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。
5、从0,2,3,6,7这五个数码中选出四个,可以组成多少个可以被8整除的没有重复数字的四位数?
【分析】 16个。
提示:6320,3720,2360,2760,6032,3072,2736,7632,
7320,6720,7360,3760,7032,6072,2376,3672。
6、从前有三个和尚,一个讲真话,一个讲假话,另一个有时讲真话,有时讲假话。一天,一个智者遇到这三个和尚,他问第一位和尚:"你后面是哪位和尚?"和 尚回答:"讲真话的。"他又问第二个和尚:"你是哪一位?"得到的回答:"有时讲真话,有时讲假话。"他问第三位和尚:"你前面的是哪位和尚?"第三位和 尚回答说:"讲假话的。"根据他们的回答,智者马上分清了他们各是哪一位和尚,请你说出智者的答案。
解答:假设第一位和尚回答的是真话,即第二位和尚是"讲真话的"和尚,但第二位和尚却说自己是"有时讲真话,有时讲假话",这就引出了矛盾。所以第一位和尚回答的不是真话,即第二位和尚不是讲真话的和尚,当然他自己也不会是"讲真话的和尚",故只能是第三位和尚是讲真话的和尚。所 以第三位和尚回答的是真话,即第二位和尚是"讲假话的",由此可知,第一位和尚是有时讲真话,有时讲假话。
7、姐妹俩今年的年龄和是40岁,当姐姐像妹妹现在这样大时,妹妹的年龄恰好是姐姐年龄的一半.则姐姐今年多少岁.
姐妹俩的年龄分别是她们年龄差的3倍和2倍,即年龄比为3∶2,所
8、在一个圆环形的跑道上,甲、乙两人在同一地点沿相同方向跑时,每隔16分相遇一次,如果两人速度不变,两人在同一地点沿相反方向跑时,每隔8分相遇一次,则甲乙跑完一圈各需要多长时间?
假设路程为1份 ,甲乙的速度差为 ,甲乙的速度和为 ,快得的速度是 ,慢的速度是 ,跑完一圈各需要 分钟, 分钟
9、一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用多少小时.
水速:(210÷6)-25=10(千米/时)
返回原处所需要的时间:210÷(25-10)=14(小时).
10、46305乘以一个自然数a,乘积是一个整数的平方。求最小的a和这个整数。
a=3×5×7=105;46305×105=22052。
提示:完全平方数的所有质因数都是偶数次方。
11、如图,三角形ABC被分成了甲(阴影部分)、乙两部分, , , ,乙部分面积是甲部分面积的几倍?
连接 .
∵ ,
∴ ,
又∵ ,
∴ ,∴ , .
12、妈妈以每分钟 米的速度从家步行到单位上班, 分钟后,小华跑步从家追赶妈妈
结果在距家 米的地方追上妈妈。小华每分钟跑多少米?
分钟妈妈走了 (米),在小华追上妈妈的过程中,妈妈又走了 (米),妈妈走这一段的时间是: (分钟),即是小华追上妈妈的时间。又知道小华跑的路程是 米,然后根据速度=路程÷时间,就可以求出小华每分钟跑多少米,即:小华的速度: (米
13、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
【解】从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同
14、99张卡片上分别写着1~99.甲先从中抽走一张,然后乙再从中抽走一张,如此轮
下去.若最后的两张上的数是互质数,则甲胜;若最后剩下的两个数不是互质数,则乙胜.
问甲要想获胜应该怎样抽取卡片?
甲抽99,把剩下的数两两分组为(1,2)(3,4)…(97,98),无论乙抽何数,甲都抽同组中的另一个数.这样最后将剩下同一组中的两个数,这两数相邻必互质,甲胜.
15、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?
本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
16、
解答: 原式 ( )
17、如图,三角形 的面积是 , 在 上,点 在 上,且 , , 与 交于点 .则四边形 的面积等于多少.
解答:连接 ,
根据燕尾定理, , ,
设 份,则 份, 份,
份
份。
所以
18、 , , 为 个小于 的质数, ,求这三个质数.
解答:因为三个质数之和为偶数,所以这三个质数必为两奇一偶,其中偶数只能是 ,另两个奇质数之和为 ,又因为这三个数都要小于 ,所以只能为 和 ,所以这三个质数分别是 , , .
19、6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?
解答:第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候; 第6个人接水时,只有他1个人等候.可见,等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会最少,因此,应当把接水时间按从少到多顺序排列等候接水,这个最短时间是 (分).
20、有一个长方体容器,长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?
解答:V=30×20×6=3600(立方厘米) h=3600÷(20×10)=18(厘米)
21、四位同学进行了一次乒乓球单打比赛,当比赛进行了若干场后,体育老师问他们分别比赛了多少场。这四位同学回答分别比了1、2、3、3场,老师说:“你们肯定有人记错了。”请问:老师是怎么知道的呢?(提示:从奇偶性来考虑)
每比赛一场四个人比赛的场次之和就增加两场,所以,四个人的比赛场数之和一定是偶数,但是在这次对话中,这四位同学回答分别比了1、2、3、3场一共9场这是不可能的。
22、甲乙二人同时从A地去B地,前3小时,甲因修车1小时,因此,乙领先于甲4千米。又经过3小时,甲反而领先了乙17千米,求二人的速度。
解答:后3小时,甲比乙多行了:4+17=21千米
每小时,甲比乙多行:21÷3=7千米
前3小时,如果甲不修车,能比乙多行21千米
甲修车1小时,比乙落后4千米
说明甲修车这1小时,少走了21+4=25千米
甲速度为每小时25千米
乙速度为每小时:25-7=18千米
23、师徒二人生产同一种零件,土地比师傅早2小时开工,当师傅生产了2小时后,发现自己比徒弟少做20个零件。二人又生产2小时。师傅反而比徒弟多生产了10个。师傅每小时生产多少个?
解答:后面2小时,师傅比徒弟多生产了:10+20=30个
每小时,师傅比徒弟多生产:30÷2=15个
如果师徒同时开工,前4个小时,
师傅比徒弟多生产:15×4=60个
师傅比徒弟少2小时,比徒弟少生产20个
说明师傅2小时能生产:20+60=80个
师傅每小时生产:80÷2=40个
徒弟每小时生产:40-15=25个
24、甲每小时生产了12个零件,乙每小时生产8个零件。一次,甲乙同时生产同样多的零件,结果甲比乙提前5小时完成了任务。问:甲一共生产了多少零件
解答:如果甲也按乙的时间生产,能比乙多生产:
5×12=60个
每小时,甲比乙多生产:12-8=4个
乙的生产时间:60÷4=15小时
甲乙数量相同,为:15×8=120个
25、在28的前面连续写上若干个1993,得到一个多位数:199319931993.....1993199328,如果这个多位数能被11整除,哪么它最少是几位数?
(9+3)-(1-9)=2
8-2=6
6+2n≡0(mod11)
n最小为8,即在28前面写8个1993,这是一个4×8+2=34位数
26、一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如下图.问这60块长方体表面积的和是多少平方米?
原来的正方体有六个外表面,每个面的面积是1×1=1(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的.再考虑每锯一刀,就会得到两个1平方米的表面,1×2=2(平方米)
现在一共锯了:2+3+4=9(刀),
一共得到2×9=18(平方米)的表面.
因此,总的表面积为:6+(2+3+4)×2=24(平方米)。
这道题只要明白每锯一刀就会得到两个一平方米的表面,然后求出锯了多少刀,就可以求出总的表面积。
27、把30写成若干个连续自然数之和可以是:30=4+5+6+7+8=9+10+11
那么把2002写成若干个自然数之和可以是:
2002=_________________________
思路:我们知道,连续n个自然数的求和公式是这样的:
假设第一个数是a,那么第n个数是a+n-1,它们的和是(a+a+n-1)*n/2,即(2a+n-1)n/2
所以 2002=(2a+n-1)n/2
(2a+n-1)n=4004=2*2*7*11*13
我们发现:当n为奇数时,2a+n-1为偶数;当n为偶数时,2a+n-1为奇数。也就是说,连个因数2不能分开。
(1).n=4,那么a=499,即2002=499+500+501+502
(2).n=4*7=28,那么a=58,即2002=58+59+60+...+84+85
(3).n=4*11=44,那么a=24,即2002=24+25+26+...+66+67
(4).n=4*13=52,那么a=13,即2002=13+14+15+...+63+64
(5).n=4*7*11=308,那么a=-147,舍去
当n取更大值时,a不再有解
所以此题一共有4解
28、在50以内,含有奇数个数约数的自然数有哪些?
思路:任何一个自然数都可以表示成两个自然数乘积的形式:N=a×b,其中a、b、N都是自然数。(质数P可以表示成:P=P×1)
也就是说一个自然数的约数都是成对出现的。如果约数个数是奇数个,只有一种情况那就是a=b,也就是说N是完全平方数。
所以此题的解是:1、4、9、16、25、36、49
29、有3种茶杯,每只售价分别为5元、7元和9元,张敏买了三种茶杯各若干只,且数量互不相等,共花了52元,若每种茶杯降价2元,那么就只要花36元,则其中他买了9元一只的多少只?
思路:若降价2元就少付52-36=16元,那么一共买了8个杯子。
设9元的买了x个,7元的买了y个,那么5元的买了(8-x-y)个
列方程:9x+7y+5(8-x-y)=52
得到关系式:2x+y=6
有如下两种可能:x=1, y=4;x=2, y=2
因为数量互补相等,所以9元的1个,7元的4个,5元的3个
30、世界杯中国队小组赛,5:00球迷开始进场,在进场之前,已有部分球迷在排队等候,假设5:00以后每分钟到的球迷人数固定不变。那么开6个进口处,40分钟之后就没有球迷排队了,如果开放4个进口处,80分钟之后就没有球迷排队等候了。要使20分钟之后就没有球迷等候,至少要开放多少个进口处?
思路:设每个口每分钟检入x人,每分钟排队y人,已经有a人排队。
40*6x=40y+a
80*4x=80y+a
两式相减,得 y=2x,a=160x
20分钟:20*Nx=20y+a,代入得到:20Nx=40x+160x,N=10
开放10个进口。
31、一次数学课堂练习有3道题,教师先写出一道,然后,每隔5分钟再写出一道,规定:(1)每个学生在教师写出一道新题时,如果原有题还没有做完,必须立即停下来转做新题。(2)做完一道题时,如果教师没有写出新题,就转做前面相邻未做完的题。做完这三道题的不同顺序共有多少种可能情况?
5种情况 枚举
32、王明回家距家门800米时,妹妹和一只小狗一齐向他奔来,王明每分钟走40米,妹妹每分钟跑50米,小狗每分钟跑160米,小狗遇到王明后用同样的速度不停地往返于王明和妹妹之间,当王明与妹妹相距80米时,小狗跑了多少米?
思路:相距80米时,一共已经走了:(800-80)÷(40+50)=8分钟
小狗跑了:8×160=1280 米
33、一辆货车从甲地开往乙地,如果每小时行驶60千米,则要迟到6小时,如果每小时行驶80千米,则要提前3个小时到达,问甲乙两地相距多少千米?
假设正点需要t小时,则
60*(t+6)=80*(t-3)
60*t+360=80*t-240
20t=600
t=30
则甲乙两地相距60*(30+6)=60*36=2160千米
34、把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
35、图中图(1)和图(2)是两个形状、大小完全相同的大长方形,在每个大长方形内放入四个如图(3)所示的小长方形,斜线区域是空下来的地方,已知大长方形的长比宽多6厘米,问:图(1),图(2)中画斜线的区域的周长哪个大?大多少?
解析:图(1)中画斜线区域的周长恰好等于大长方形的周长,图(2)中画斜线区域的周长明显比大长方形周长小。二者相差2?AB。
从图(2)的竖直方向看,AB=a-CD图(2)中大长方形的长是a+2b,宽是2b+CD,所以,(a+2b)-(2b+CD)=a-CD=6(厘米)故:图(1)中画斜线区域的周长比图(2)中画斜线区域的周长大,大12厘米。
36、求出图中梯形ABCD的面积,其中BC=56厘米。(单位:厘米)
解答:根据梯形面积公式,有:S梯=1/2×(AB+CD)×BC,又因为三角形ABC和CDE都是等腰直角三角形,所以AB=BE,CD=CE,也就是:S梯=1/2×(AB+CD)×BC=1/2×BC×BC,所以得BC=56cm,所有有S梯=1 /2×56×56=1568
37、有一个数:111。。。。。。1()222。。。。。。2,()前面有100个1,()后面有100个2,它能被13整除,请问()里填什么数?
1
38、有红、白球若干个,若每次拿出1个红球和1个白球,当红球拿完时,还剩下50个白球;若每次拿走1个红球和3个白球,当白球拿完时,红球还剩下50个,那么这堆红球、白球共有多少个?
(3×50+50)÷(3-1)=100-红
100+50=150_白
100+150=250
39、计算:
原式
.
40、计算:
原式
.
41、在左边的乘法算式中,我、学、数、乐各代表四个不相同的数字。如果“乐”代表“9”,那么,“我”代表__,“数”代表__,“学”代表__。
解:由“乐”代表9,可推到“学”代表1,“数”代表6;由积是一个十位数,并且前两位数都是6,可推知“我”代表8。
说明:本题是把1992年5月25日第四版上谈祥柏先生写的“六一专稿”里一题变了一下形式。要推知“乐”、“学”、“数”各代表什么数字,只要运用所学的“自然数平方尾数性质”及进位的知识,就会立即得到结果。再推“我”代表几就稍难些。
需要用估值法:
因为800002<6661661161<900002
所以8≤我≤9显然,“我”只能是8。
42、在一条长 米的电线上,黄甲虫在 从右端以每分钟 厘米的速度向左端爬去, 红甲虫和蓝甲虫从左端分别以每分钟 厘米和 厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的正中间?
8:30时黄甲虫距左端1200-15*10=1050(厘米)
设再经过t分钟,红甲虫位于蓝甲虫和黄甲虫的中间。此时,红甲虫距蓝甲虫(13-11)t厘米,距黄甲虫[1050-(13+15)t]厘米,可得方程:(13-11)t=1050-(13+15)t,解得t=35。所以从8:30再过35分钟,即9:05时红甲虫恰好在蓝甲虫与黄甲虫的中间。
43、一列数 ,这239个数不是整数的所有分数的和是多少?
分析:如果直接去找不是整数的,然后加起来,会比较困难。可以换种思考的方式,先把它们全加起来,然后减去是整数的就可以了!
是整数,分子肯定是12的倍数,而1~239中,12的倍数有12,24,36,48……228
所以,所有分数的和是
浙江省绍兴市小学语文毕业复习题(二)
班级 姓名
一、填字成词,并按要求完成练习:
三年五 ) 千山一 ) 成千 )百(((
不计( )数 依依不( ) ( )首阔步
1.在“ ”上解释所填的字。
2.第一项中斜体的字都是表示 的数。
3.表示人或事物数量很多的词有:
4.仿照带“ ”的词,再写三个:
5.从上面词语中任选3个词语,写一段连贯的话:
二、按要求写成语:
1.写出表示快的成语。
看书快____________吃饭快____________走路快____________
变化快____________时间快____________回答快____________
2.照样子,找规律,写成语。
例:奏——春 偷天换日
波——破 __________茴——莱 __________杞——松 __________
三、判断下列说法是否正确:
1.“鼎”字是上下结构,共12画,第六画是“竖折折”。( )
2. “啄木鸟大夫热情地给小树治病。”运用了“比喻”这一修辞手法。( )
四、按要求改写句子:
1.将下面的句子改为比喻句:
背上枪支和子弹压得我喘不过气来。
2.将下面的句子改为拟人句:
春天,小鹿在溪水边走。
3.用排比的方法将下面的句子写具体:
这些溪石真是形态万千呀!
五、综合改错。下面这段话有多处错误,请找出来,改在原句上:
读了“我的伯父鲁迅先生”,我见识到鲁迅先生因为能得到广大工人,农民,学生和小学生的爱抚,所以他是这样一个人,他为自己想得少,为别人想得多,他疼恨旧社会,热爱劳动人民。
六、阅读片断,完成有关练习:
(一)凡卡(节选)
天气真好,晴朗,一丝风也没有,干冷干冷的。那是个没有月亮的夜晚,可是整个村子——白房顶啦,烟囱里冒出来的一缕缕的白烟啦,披着浓霜一身银白的树木啦,雪堆啦,全看得见。天空撒(sā sǎ)满了快活地眨着眼的星星,天河显得很清楚,仿佛为了过节,有人拿
雪把它擦亮了似(shì sì)的……
1.给( )内正确的读音打上“√”:
2.用“ ”划出片断中描写天气好的句子,并仿写一句:
3.仿写词语:
干冷干冷( ) ( ) ( )
一缕缕 ( ) ( ) ( )
4.文中描写了哪些景物?请你将他们一一写下来:
( ) ( ) ( ) ( ) ( )( )
(二)读台湾诗人余光中的诗,按要求做:
乡愁
小时候
乡愁是一枚小小的邮票
我在这头
母亲在那头
长大后
乡愁是一张窄窄的船票
我在这头
新娘在那头
后来啊
乡愁是一方矮矮的坟墓
我在外头
母亲在里头
而现在
乡愁是一湾浅浅的海峡
我在这头
大陆在那头
1.什么是“乡愁”?诗人把乡愁比作什么?
2.请选择合适的理解:
⑴“乡愁是一张小小的邮票”意思是()
A.“我”经常给在家乡的母亲写信。
B.“我”经常买一些有家乡风景的邮票看。
C.“我”经常把邮票从信上剪下来保存起来。
⑵“乡愁是一张窄窄的船票”意思是()
A.“我” 经常坐着船和妻子一起去旅行。
B.“我”经常坐着船去看妻子。
C.“我”经常把用过的邮票保存起来。
⑶“乡愁是一方矮矮的坟墓”意思是()
A.“我”为去世的母亲建了一个坟墓。
B.家乡的墓地上有许多矮矮的坟墓。
C.“我”经常思念已经去世的母亲。
3.“乡愁是一湾浅浅的海峡”,这里的“海峡”指的是海峡。这首诗表达了海
峡两岸人民的强烈愿望。
七、作文: 你喜欢上面这首诗吗?其实,你也能写,不信,试一试:
母爱
小时候
母爱是甜甜的乳汁
吮着它
甜蜜蜜
上学后
母爱是
❷ 六年级数学奥数题及答案
三个人住店,一个10元。店主说优惠,只要25元,店员补钱时偷偷拿了2元,把剩下的版3元分给了那三个人。那么权,他们每人出了10-1=9元,3个人是3*9=27元,加上店员拿走的2元,27+2=29元,还有1元呢?
其实是:3个人的25元+店主找的3元+店员偷偷拿走的2元=30元,他算错了。(只有1道)
❸ 初中的数学,物理;化学;语文;英语的奥数教材和奥数题
在网上下
❹ 六年级升初中要考的数学题/奥数题怎么办呀不会。
我也是六年级学生我也是女生可我是奥数好语文差
首先要对奥数感兴趣
最主要的是要多做多练
一、同时出发、相向而行
1、两辆汽车从A、B两地同时出发、相向而行,甲每小行50千米,乙每小行60千米,经过3.5小时相遇。A、B两地相距多少千米?(用两种方法解答)
第一种方法: 第二种方法:
2、小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?
3、客车和货车同时从两城出发,相向而行,客车每小时行45千米,比货车每小时多行3千米,经过4小时两车相遇。两城相距多少千米?
4、客轮、货轮从武汉和上海两地同时出发,相对开出,货轮每小时行40千米,客轮的速度是货轮的1.2倍,两地相距862.4千米。请问几小时两船可以相遇?
5、两个工程队同时从两端开一条长850米的隧道,甲队每天开凿26米,乙队每天开凿24米,经过几天就可以打通?
6、师徒两个人合作加工一批零件,师傅每小时加工68个,徒弟每小时加工55个,合作6小时完成任务,这批零件一共有多少个?
7、加工厂用两台磨面机同时磨面17280千克,第一台磨面机每小时磨面364千克,第二台磨面每小时磨面356千克,如果每天加工8小时,磨完这些面粉需要多少天?
二、同时出发,相背而行
1、甲、乙两人同时从学校出发向反方向行去。甲每分钟走60米,乙每分钟走70米,5分钟后两人相距多少米?(用两种方法解答)
第一种方法: 第二种方法:
2、两辆汽车同时从一个工厂出发,相背而行,一辆汽车每小时行33千米,另一辆汽车每小时行42千米。多少分钟后两车相距15千米?
三、同时出发、相向而行,不相遇
1、甲、乙两站间的铁路长560千米,两列火车同时从两站相对开出,一列火车每小时行63.5千米,另一列火车每小时行80.5千米,3小时后两列火车还相距多少千米?
2、货车和客车同时从甲、乙两地相对开出,货车每小时行57.5千米,客车每小时行45.8千米,3小时后两车相距100千米,甲、乙两地相距多少千米?
3、师徒两人共同加工312个零件,师傅每小时加工45个,徒弟每小时加工35个,加工几小时后还剩40个?
四、不同时出发,相向而行
1、甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米,甲车开出1小时后,乙车才出发,5小相遇。两地间的铁路长多少千米?(用两种方法解答)
第一种方法: 第二种方法:
2、甲、乙两港的水路长726千米,一艘货轮从甲港开往乙港,每小时行69千米,1小时后,一艘客轮从乙港开住甲港,每小时行77千米,客轮开出后几小时与货轮相遇?相遇时客轮和货轮各行了多少千米?
3、一批零件478个,甲每小时加工50个,乙每小时加工32个,甲先加工3小时余下的两人合作完成,再过几小时完成任务?
五、同时、同地点出发、同方向行驶
甲、乙两人同时骑车从A地到B地,甲每小时行14.2千米,乙每小时行18.7千米。8小时后两人相距多少千米?(用两种方法解答)
第一种方法: 第二种方法:
行程应用题
1、客货两车分别相距387千米的甲、乙两地相对开出,客车先行1小时,每小时行72千米,货车开出后2.5小时与客车相遇。货车每小时行多少千米?
2、甲、乙两辆汽车同时同向而行,甲汽车每小时行42千米,乙汽车每小时行45千米,2.4小时后两车相距多少千米?
3、甲、乙两船同时从一个码头向相反方向开出,甲船每小时行23.5千米,乙船每小时行21.5千米,航行几个小时后,两船相距315千米?
4、甲、乙两列火车同时从相距453千米的两地相对开出,甲车每小时行45千米。5小时后两车还相距28千米,乙车每小时行多少千米?
5、一辆汽车从甲地开往乙地,每小时行56千米,3小时后距离中点还有6千米,这时这辆汽车距乙地还有多少千米?
6、两列火车同时从甲乙两地相向开出,第一列火车从甲站出发,每小时行50千米,第二列火车从乙站出发,每小时行60千米,两车相遇时,第一列火车正好行了全程的 ,离乙站还有300千米。甲乙两地相距多少千米?
7、甲乙两个同学在400米一圈的运动场跑道上,同时同地反向跑步,甲每秒钟5米,乙每秒钟6米,大约多少秒钟后两人相遇?
8、赵兰步行上学,每分钟行75米,赵兰离家6分钟后,妈妈发现赵兰没戴红领巾,就骑车去追,每分钟行375米,妈妈出发多少分钟后能追上赵兰?
9、甲乙两车同时从两地相向而行,甲每小时行83千米,乙每小时行95千米,两车在距中点24千米处相遇,求两地距离?
10、甲、乙两列火车分别从两个车站相向开出,甲车每小时行48千米,乙车每小时行52千米,如果相遇时,甲车比乙车一共少行20千米,那么两站之间的距离是多少千米
这些是较为重要的,我都在做走向外国语本很好的书多做做
❺ 六年级奥数题
1.用9.5元买19支笔,已知毛笔每支角,彩笔每支4角,钢笔每支一元,问每种笔各买几支?(每种都要买,用不定方程解)
2.篮子里有苹果、桔子和梨共30个,价值24元,已知苹果每千克0.6元,桔子每千克1元,梨每千克1.2元,问篮子里最多有几个梨?(用不定方程解)
3.小明用70元钱买了甲、乙、丙、丁四种书,共10册。已知甲、乙、丙、丁四种书每本分别为3元、5元、7元、11元,而且每种书至少买了一本。那么,共有多少种不同的购买方法?
4.如图1,ABCD是直角梯形,AD=5CM,DC=4CM,三角形DOC的面积是1.5平方厘米,则阴影部分的面积是()平方厘米。
5.把3个长10,宽5,高4的长方体拼成一个大长方体,这个大长方体的表面积最大值与最小值相差()平方厘米。
6.一辆自行车的前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米,自行车的车轮直径约是()米。(得数保留两位小数)
7.有一项工作,3个男工和4个女工一天能完成1/6,3个女工和4个男工一天能完成5/12,如果一个男工单独做,几天才能完成这项工作?(应用题)
8.一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。两张纸片重叠一部分放在左面上,覆盖桌面的面积为38平方厘米。问:两张纸片重合部分的面积是多少?
9.在100名学生中,爱好音乐的有56人,爱好体育的有75人。那么,既爱好音乐又爱好体育的人,最少有多少人?最多有多少人?
10.某班参加体育活动的学生有25人,参加音乐活动的有26人,参加美术活动的有24人,同时参加体、音活动的有16人,同时参加音、美活动的有15人同时参加体、美活动的有14人,三个组同时都参加的有5人。这个班共有多少名学生参加活动?
11.某校六年级举行语文和数学竞赛,参加人数占全年级总人数的百分之40.参加语文竞赛的占竞赛人数的五分之二,参加数学竞赛的占竞赛人数的四分之三,两项都参加的有12人。这个学校六年级共有多少人?
12.某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这个班三项都会的至少有几人?
13.分母是385的最简真分数共有多少个?这些真分数的和是多少?
14.某校参加数学竞赛有120名男生,80名女生,参加语文竞赛的有120名女生,80名男生,已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生有多少人?
15.在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。这本书的插图中正方形最少有多少个?最多有多少个?
16.经纬小学四年级有45人参加了慰问坚守在青年宫、防洪纪念塔、九站三个地段抗洪的解放军叔叔的活动,去过青年宫慰问的有19人,去过防洪纪念塔的有18人,去过九站的有16人;去过青年宫、防洪纪念塔两处的有7人,去过青年宫、九站两处的有有6人,去过防洪纪念塔、九站两处的有5人;有3人三处都去过;其余的在校准备慰问品。准备慰问品的有多少人?
17.五年级一班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语文竞赛,其中参加数学和英语两科的有12人,参加英语和语文两科的有14人,参加数学和语文两科的有10人,那么五年级一班至少有多少人?
18.在1到1998的自然数中,能被2整除,但不能被3和7整除的数有多少个?
19.某工厂第一季度有百分之80的人全勤,第二季度有百分之85的人全勤,第三季度有百分之95的人全勤,第四季度有百分之90的人全勤。问:全年全勤的人至多占全厂人数的百分之几?至少占全厂人数的百分之几?
20.某校五年级共有110人,参加语文、数学、英语散客活动小组,每人至少参加一组。已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人。那么三组都参加的有多少人?
❻ 六年级升初中要考的数学题/奥数题
您好。请先冷静下来。分析一下奥数要考的内容。根据我的奥数经验,小学奥数多数是回考答脑筋急转弯哪种类型的考题。你可以找一本奥数书,去翻翻典型题目,训练一下思维。小学奥数最重要的还是平常的多思考。 再提供给您一个奥数网站http://www.aoshu.com/tiku/里面有许多习题。。
祝您考试成功。
❼ 初中的奥数题有哪些
1.某车间,第一组4人共装配零件189个;第二组6人,比第一组多装配147个;第三组个人,每人装配45个。这个车间平均每人装配零件多少个?
2.甲.乙.丙三数,甲.乙的平均数是30,乙.丙的平均数是36,甲.丙的平均数是33.问这三个数的平均数是多少?
3.甲.乙.丙三个学生各拿出同样多的钱和买同样规格的练习册。买来之后,甲和乙都比乙多要6本,因此,甲和乙分别给乙0.54元。每本练习本的价格是多少元?
4.王月同学期中考试语文.数学.体育三科平均84分,加上英语成绩后,四科平均成绩比原来高了1.5分。英语考了多少分?
5.六年级一班同学植树,参加植树的男生人数是女生人数的两倍,男生平均每人种4棵树苗,女生平均每人种1棵树苗六年级一班参加植树的同学平均每人植
6.华龙化肥厂去年上半年平均每月生产化肥8800吨,下半年平均每月生产化肥10000吨,今年计划比去年增产12000吨,今年计划平均生产化肥多少吨?
7. 四年级语文期中测验,1班45人,平均分86分,2班41人,平均分89分,3班42人,平均分78 分。总平均分多少分?
8. 一列火车从甲站开往乙站,平均每小时行120千米,2.5小时到达。从甲站返回乙站时每小时多行80千米。求这列火车往返平均速度。
9. 某小学参加学区数学竞赛,高年级6人的平均分数是71分,中年级7人的平均分数是64分,低年级8人的平均分数也是64分。求参加竞赛的同学的总平均分数。
10. 某班统计数学成绩,平均成绩是85.1分,后来发现周明同学的成绩是96分而被误看做69分。重新计算后,全班平均成绩是85.7分。这个班有多少个同学?
11.植树节,6(1)班和六(2)班共植树100棵,六(1)班和六(2)班共植树120棵,六(1)班植树棵树站三个班总数的7/3(七分之三),三个班共植树多少课?
❽ 小升初经典奥数题有些什么要最容易考的。
、第五次人口普查,我国人口为十二亿九千五百三十八万人,写作( )人,省略亿位后面尾数约是( )人。
2、“青山青水吹青风,青天青地立青松,青青柳枝青春日,青青读书青色中。”这首诗描写的是小朋友青青在大好春光里读书的美丽图画,诗的特点是“青”字很多,请你先数一数,再算一算“青”字出现的次数占全诗总字数的比率是( )。
3、首次北京至拉萨的特快列车,2006年7月1日21:30始发,7月3日20:58到达,全程运行时间是( ),北京至拉萨铁路长4064千米,途中翻越的大山最高达5068米,这列火车平均每小时大约行( )千米(结果保留一位小数)。
4、一个圆形花坛,半径是3米,如果半径增加1米,那么花坛面积大约增加( )平方米。(得数保留整数)
5、在一个比例里,两个内项互为倒数,其中一个外项是7,另一个外项是( )
6、北京奥运会我国选手得冠军总数是( )枚。
7、在一幅比例是 的地图上,量得庐江站至合肥站的图上距离大约是10厘米,两站之间的实际铁路长约是( )千米
8、只列算式不计算:甲数是160,乙数是甲数的 ,甲、乙两数的平均数是( )。
9、妈妈把2000元钱存人银行,整存整取三年,年利率是2.70%,到期时妈妈可以取回本金和税后利息一共( )元。(利息税率为20%)
10、一个等腰三角形的顶角是80°,它的一个底角度数是( )。
二、判断题:(6分,每小题1分,正确的划“√”,错误的划“×”)
l、一个合数至少有3个约数。 ( )
2、一次植树的成活率是90%,表示有10棵树没成活。 ( )
3、a是自然数,a的倒数是 。 ( )
4、圆的直径和周长成正比例。 ( )
5、面积相等的两三角形一定能拼成平行四边形。 ( )
6、比0.2大比0.6小的小数只有3个。 ( )
三、选择题:(把正确答案的序号写在括号里)(10分。每小题2分)
1、小青和小柳完成同一件工作。小青要4小时,小柳要3小时。小青和小柳工作效率的比是( )
A、4:3 B、3:4 C、4:7 D、不能确定
2、把一个长方形的框架拉成一个平行四边形,这个平行四边形的周长与原长方形周长相比——( ),这个平行四边形的面积与原长方形面积相比——( )
A、长方形大 B、平行四边形大 C、一样大 D、不能比较
3、表示一个城市一个月气温的变化情况,最好运用( )
A、统计表 B、条形统计图 C、折线统计图 D、扇形统计图
4、下列图形中只有一条对称轴的图形是( )
A、长方形 B、正方形 C、扇形 D、圆
5、一根竹竿重约2( )
A、米 B、厘米 C、吨 D、千克
四、计算题:(32分)
1、直接写得数。(8分,每小题1分)
2、求未知数x。(9分,每小题3分)
3、怎样简便怎样算。(15分,每小题3分)
五、列式方程或算式,并计算出得数:(6分,每小题3分)
1、125减去一个数的 的差是5,这个数是多少?
2、一个数加上它的120%等于4.4,这个数是多少?
六、操作计算。(10分)
1、画画算算。(5分,①2分,②3分)
①请你在右面正方形中画一个最大的圆。
②量出相关数据,算出这个圆的面积。
2、青松村计划从杨柳河修一条水渠到村口,如果请你当工程师,请你根据下面的要求帮助青松村预算一下。(5分,①2分,②3分)
①怎样修水渠最短,在图上画出示意图。
②如果每千米花3万元的建修费,共需多少万元?
七、应用题。(19分)
1、营养学家建议:儿童每日喝水应不少于1500毫升,青青每天用底面直径6厘米,高10厘米的水杯喝6满杯水,达到要求了吗?(4分)
2、2006年最大的台风叫“桑美”,风力每秒60米,比跑得最快的人的速度的4倍还多lO米,最快的人每秒跑多少米?(用方程解)(4分)
3、一项工程,甲单独做8小时完成,乙单独做8小时只能完成这项工程的 。这项工程如果由甲、乙两队合作,需要多少小时才能完成?(4分)
4、下面是小青和小柳两个同学8次数学成绩统计图,看图回答问题。(7分)
(1)(2分)第一次成绩小青是( ),小柳是( )。他们成绩中的最高分是 ( ),最低分是( )。
(2)(2分)小青第四次成绩比第三次提高了( )%。小柳第四次成绩比第三次下降了( )%。
(3)(2分)八次成绩的平均分小青是( ),小柳是( )。
(4)(1分)请你根据统计图,用简短的话,分别评价一下小青和小柳的数学学习情况。
八、选做题(10分)
1、在图中用阴影表示 公顷。(3分)
2、据统计:回收5吨废纸能造新纸4吨,相当于少砍85棵树,某造纸厂去年回收废纸1200吨。请你通过计算,用数据说明回收废纸的好处。(3分)
语文
⒈填字、组成成语。(共8分)
一( )不( ) 一( )不( ) 一( )不( )
一( )不( ) 一( )不( ) 一( )不( )
一( )不( ) 一( )不( )
⒉看拼音写词语或句子(共11分)
⒊ 写出我国古代文学四大名著及其作者。(共4分)
⒋ 相传蜀汉大将关羽写过《戒子书》,书中有这样一句话:“读书好:好读书:读好书”。想一想,这句话的三个分句各表达了什么意思?(共3分)
⑴ “读书好”的意思:
⑵ “好读书”的意思:
⑶ “读好书”的意思:
⒌ 给句子中画横线的字注音。(共2分)
我看着( )试卷,心里异常着( )急,我知从何着( )手,更谈不上有什么高着( )
⒍ 请选择恰当的词语填在下面文言文的括号内。(共2分)
地球上水的总储量为138.6亿立方米,( )淡水只占2.53%;( )对人类生活最密切的湖泊、河流和浅层地下的淡水( )占淡水总储量的0.31%。( )万物赖以生存的淡水资源并不是取之不言,用之不竭的。
节约用水已成为人类生活的当物之急。
备选词语:
①而 ②因此 ③其中 ④只 ⑤可见 ⑥仅 ⑦这样 ⑧从而
⒎有些句子由于离开了一定的语言环境或停顿的地方不同,可以表示不同的意思,请你写出下面这句话的三种不同意思。(共3分)
我扶你走吧:⒈ ⒉ ⒊
⒏写出下句,并在括号里填写出的是哪个季节?(共16分)
⑴ 月落乌啼霜满天, ( )
⑵ 碧玉妆成一树高, ( )
⑶ 梅子黄时日日晴, ( )
⑷ 千山鸟飞绝, ( )
⑸ 接天莲叶无究碧, ( )
⑹ 墙角数枝梅, ( )
⑺ 可怜九月初三夜, ( )
⑻ 天街小雨润如酥, ( )
⒐ 读一读,把下面的句子排成一段层次清楚的话,把序号写在括号里,再填空。(共8分)
( )因近大海,海中有一座名山,唤为花果山,
( )其石有三丈六尺五寸高,在二丈四丈围圆。
( )内有仙胞,一日迸裂,产一石卵,似圆球大,
( )海外有国家名日傲强国。
( )甚自开辟以来,每受天真地秀,日精月华,感之既久,逐有灵通之 意。
( )因见风,化作一个石猴。
( )四面更无树木遮阴,左右例有芝兰相衬。
( )那座山正当顶上,有块仙石。
二、生活常识填空(共5分)
⒈ 在日常生活中难免遇到一些紧急情况,这时,我们通过拨打电话,向有关部门求助,所以我们应记住一些紧急求助的电话号码。其中火警、治安报警、交通事故、医疗急救的电话号码排序正确的是( )。
❾ 奥数题大全 有答案的
希望杯第一届(1990年)初中一年级第二试试题
一、选择题(每题1分,共5分)
以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.
1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是 ( ) A.a%. B.(1+a)%. C.
1100aa D.100a
a
2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时 ( ) A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少. B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多. C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同. D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定. 3.已知数x=100,则( )
A.x是完全平方数.B.(x-50)是完全平方数. C.(x-25)是完全平方数.D.(x+50)是完全平方数.
4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111
,,abbac
的大小关系是( )
A.
111abbac; B.1ba<1ab<1c
; C. 1c<1ba<1ab; D. 1c<1ab<1ba. 5.x=9,y=-4是二元二次方程2x2
+5xy+3y2
=30的一组整数解,这个方程的不同的整数解共有
( )
A.2组.
B.6组.C.12组. D.16组.
二、填空题(每题1分,共5分)
1.方程|1990x-1990|=1990的根是______.
2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示
初一全科目课件教案习题汇总语文数学英语历史地理
已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.
3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.
4.当m=______时,二元二次六项式6x2
+mxy-4y2
-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.
5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.
三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)
1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?
2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=
13S1=1
3
S2,求S.
3.求方程1115
6
xyz的正整数解.
❿ 数学小学升初中奥数题
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
小学数学应用题综合训练(08)
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
小学数学应用题综合训练(09)
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
小学数学应用题综合训练(10)
91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
小学数学应用题综合训练(11)
101. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱?
102. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?
103. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
104. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?
105. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?
106. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?
107. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?
108. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天?
109. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台?
110. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍.那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少?
小学数学应用题综合训练(12)
111. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇?
112. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?
113. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题?
114. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分?
115. 甲、乙两物体沿环形跑道相对运动,从相距150米(环形跑道上小弧的长)的两点出发,如果沿小弧运动,甲和乙第10秒相遇,如果沿大弧运动,经过14秒相遇.已知当甲跑完环形跑道一圈时,乙只跑90米.求环形跑道的周长及甲、乙两物体运动的速度?