⑴ 分数的混合运算如何巧算
按照分数混合运算的计算法则,先算会乘备,9积为备。再调整运算顺序,把同分母的分数备与号相加,最后一用所得的和减备,即可达到简算的目的。
⑵ 分数的巧算
一项分开为两项:1/m(m+1)(m+2)=1/2[1/m(m=1)-1/(m+1)(m+2)]
1/(m+1)(m+2)(m+3)=1/2[1/(m+1)(m+2)-1/(m+2)(m+3)]
两项相加就可以消去中间项。
四个连乘的也类似,先每个都版拆开为两项,然后相权消,然后再拆开,再消。
⑶ 数学分数巧算
原式=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
⑷ 分数拆分法巧算
分数计算是小学计算部分的重要部分,也是小升初竞赛的常考内容。对于分数的运算,除了掌握常规的运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。因此,关于详细的方法与技巧如下:
分数运算的技巧主要表现在两方面:一是,所有的整数、小数计算技巧全都可以在分数的巧算上加以应用,例如乘法的运算定律、提取公因式、字母替换等常用方法;二是,分数简算中独有的方法,包括分数裂项、整体约分法等。
凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数...从而使运算得到简化。
改顺序
通过改变分数式中的先后顺序,使运算算简便。常见有以下几种方法:
01加括号性质
在一个只有加减法运算的算式中,给算式的一部分添上括号,如果括号前面是加号,那么括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括号性质
在一个有括号的加减法运算的算式中,将算式中的括号去掉,如果括号前面是加号,那么去掉括号后,括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分数搬家
在连减或加减混合运算中,如果算式中没有括号,那么计算时,可以带着符号“搬家”,用“字母”表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
当几个乘积相加减,而这些乘积中又有相同的因数时,我们可以采用提取公因数的方法进行巧算。如果乘积中另外几个因数相加减的结果正好凑成整十、整百、整千、整万的数,或是是一些比较简单的数,那么计算就更为简便。这种方法叫“提取公因数法”。
01简单提取法
02创造条件法
对于复杂的分数算式,要根据算式特点,进行一定的转化,创造条件后再运用提取公因数的方法来简算。
拆数
一组分数混合运算时,为了能够“凑整”或凑成比较简单的数,常常需要先把分数中分子或分母进行拆分,再来进行分组运算。这种巧算方法叫“拆分法”,也叫“分解分组法”。
代数法
在相同数字较多的分数式中,用字母表示式子中的一部分,使运算更加方便。这就是分数式中的代数法。
易错点纠正
异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。
在计算过程中要注意统一分数单位。
在比较分数与小数大小时,要先统一他们的表现形式。将分数转化为小数或者将小数转化为分数。只有表现形式统一了,才有可能比较大小。分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保留三位小数。
温馨提示:
计算类的题目一定要多练习才能提高计算速度和准确率
⑸ 六年级奥数分数简巧算的方法!
1、求…………34的平方(省略19个3)的各数位上的数之和。解答:拆分成(33……3+1)^2的形式总共有23个3。(33……3+1)^2=9×(11……11)^2+2×3×(11……11)+1=99…99×(11……11))+6×(11……11)+1其中:99……99=10^23-1(33……3+1)^2=(99……99)×(11……11)+6×(11……11)+1=(10^23-1)×(11……11)+6×(11……11)+!=(10^23)×(11……11)+5×(11……11)+1=1111…1155…56(23个1,22个5,最后为6)其数字和=23×1+22×5+6=139。2、2-(十六分之七X二又三分之二+七分之一)X一又十一分之十除以(十二又三分之一3.75除以十四分之五)思路点拔:将真分数化成假分数、小数化成分数,约分、通分计算。3、0.12(二循环)+0.23(三循环)+0.34(四循环,后面的也一样)+0.45+0.56+0.67+0.78+0.89解答:将循环小数化成真分数进行计算根据0.3(3循环)=1/3;0.2(2循环)=(1/3)×(2/3);0.4(4循环)=(1/3)×(4/3);……0.9(9循环)=(1/3)×(9/3);得出各循环小数部分的分数分别是:(1/3)×(2/30);1/30;(1/3)×(4/30);……(1/3)×(9/30)。然后,第一个小数部分分别相加,将1/30,变成(1/3)×(3/30)循环的部分再分别相加原式=(0.1+0.2+0,3+……+0.8)+(1/3)×(2/30)+(1/3)×(3/30)+(1/3)×(4/30)+……(1/3)×(9/30)将后面分数部分提出(1/90),变成(1/90)×(2+3+4……+9)进行计算。4、1+三分之一+三的二次方分之一+三的三次方之一。。。。。。。+三的一百次方之一解答:令原式=A则3A=3+1+1/3+1/3^2+1/3^3+……+1/3^99=3+A-1/3^100解出方程:A=3/2-(2×3^100)^(-1)
⑹ 小学奥数题分数巧算
[(15分之8)除以 0.32 -(9分之7)乘 0.375 ] 除以 (1又8分之3)
=[(8/15*(25/8)-(7/9)*(3/8)]*8/11
=1/8*(40/3-7/3)*8/11
=1/11*11
=1
⑺ 分数的巧算和速算
1/2012
⑻ 分数简便计算的窍门和技巧
分数计算是小学计算部分的重要部分,也是小升初竞赛的常考内容。对于分数的运算,除了掌握常规的运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。今天小升汇总了分数巧算的五大方法,一起来学习吧!
”
分数运算的技巧主要表现在两方面:一是,所有的整数、小数计算技巧全都可以在分数的巧算上加以应用,例如乘法的运算定律、提取公因式、字母替换等常用方法;二是,分数简算中独有的方法,包括分数裂项、整体约分法等。
凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数...从而使运算得到简化。
改顺序
通过改变分数式中的先后顺序,使运算算简便。常见有以下几种方法:
01加括号性质
在一个只有加减法运算的算式中,给算式的一部分添上括号,如果括号前面是加号,那么括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括号性质
在一个有括号的加减法运算的算式中,将算式中的括号去掉,如果括号前面是加号,那么去掉括号后,括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分数搬家
在连减或加减混合运算中,如果算式中没有括号,那么计算时,可以带着符号“搬家”,用“字母”表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
当几个乘积相加减,而这些乘积中又有相同的因数时,我们可以采用提取公因数的方法进行巧算。如果乘积中另外几个因数相加减的结果正好凑成整十、整百、整千、整万的数,或是是一些比较简单的数,那么计算就更为简便。这种方法叫“提取公因数法”。
01简单提取法
02创造条件法
对于复杂的分数算式,要根据算式特点,进行一定的转化,创造条件后再运用提取公因数的方法来简算。
拆数
一组分数混合运算时,为了能够“凑整”或凑成比较简单的数,常常需要先把分数中分子或分母进行拆分,再来进行分组运算。这种巧算方法叫“拆分法”,也叫“分解分组法”。
代数法
在相同数字较多的分数式中,用字母表示式子中的一部分,使运算更加方便。这就是分数式中的代数法。
易错点纠正
“孩子做分数运算题目,有几个容易犯的错误,家长要注意纠正:
🔼 异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。
🔼在计算过程中要注意统一分数单位。
🔼 在比较分数与小数大小时,要先统一他们的表现形式。将分数转化为小数或者将小数转化为分数。只有表现形式统一了,才有可能比较大小。分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保留三位小数。
⑼ 五年级数学(分数的巧算)
第一题复
5/6=1/2+1/3 7/12=1/3+1/4 9/20=1/4+1/5.....
所以5/6-7/12-9/20=1/2+1/3-1/3+1/4-1/4+1/5=1/2+1/5
我就举前三个相减的例子制,所面也可以这么拆的!
第二题
1/2=1-1/2 5/6=1-1/6 11/12=1-1/12
所以1/2+5/6+11/12=1+1+1-1/2-1/6-1/12=3-1/2-(1/2-1/3)-(1/3-1/4)......
第三题
5/4-9/20+11/30-13/42+15/56
=1+1/4-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)+(1/7+1/8)=......
这三题都用到分数拆项法,如果有兴趣,可以网络一下相关内容!