① 数学中排列问题。
排 列
课题:排列的简单应用(2)
目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.
过程:
一、复习:
1.排列、排列数的定义,排列数的两个计算公式;
2.常见的排队的三种题型:
⑴某些元素不能在或必须排列在某一位置——优限法;
⑵某些元素要求连排(即必须相邻)——捆绑法;
⑶某些元素要求分离(即不能相邻)——插空法.
3.分类、分布思想的应用.
二、新授:
示例一:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
解法一:(从特殊位置考虑)
解法二:(从特殊元素考虑)若选: 若不选:
则共有 + =136080
解法三:(间接法) 136080
示例二:
⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,
则共有多少种不同的排法?
略解:甲、乙排在前排 ;丙排在后排 ;其余进行全排列 .
所以一共有 =5760种方法.
⑵ 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种?
略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进行排列有 ;
此时留下三个空,将c, d两种商品排进去一共有 ;最后将a, b“松绑”有 .所以一共有 =24种方法.
☆⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?
略解:(分类)若第一个为老师则有 ;若第一个为学生则有
所以一共有2 =72种方法.
示例三:
⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?
略解:
⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?
解法一:分成两类,一类是首位为1时,十位必须大于等于3有 种方法;另一类是首位不为1,有 种方法.所以一共有 个数比13 000大.
解法二:(排除法)比13 000小的正整数有 个,所以比13 000大的正整数有 =114个.
示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.
⑴ 第114个数是多少? ⑵ 3 796是第几个数?
解:⑴ 因为千位数是1的四位数一共有 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.
⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.
示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中
⑴ 能被25整除的数有多少个?
⑵ 十位数字比个位数字大的有多少个?
解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有 个,末尾为25的有 个,所以一共有 + =21个.
注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.
⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有 个.因为在这300个数中,十位数字与个位数字的大小关系是“等可能的”,所以十位数字比个位数字大的有 个.
三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.
四、作业:“3+X”之 排列 练习
组 合
课题:组合、组合数的综合应用⑵
目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题.
过程:
一、知识复习:
1.两个基本原理;
2.排列和组合的有关概念及相关性质.
二、例题评讲:
例1.6本不同的书,按下列要求各有多少种不同的选法:
⑴ 分给甲、乙、丙三人,每人两本;
⑵ 分为三份,每份两本;
⑶ 分为三份,一份一本,一份两本,一份三本;
⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本;
⑸ 分给甲、乙、丙三人,每人至少一本.
解:⑴ 根据分步计数原理得到: 种.
⑵ 分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法.根据分步计数原理可得: ,所以 .因此分为三份,每份两本一共有15种方法.
注:本题是分组中的“均匀分组”问题.
⑶ 这是“不均匀分组”问题,一共有 种方法.
⑷ 在⑶的基础上在进行全排列,所以一共有 种方法.
⑸ 可以分为三类情况:①“2、2、2型”即⑴中的分配情况,有 种方法;②“1、2、3型”即⑷中的分配情况,有 种方法;③“1、1、4型”,有 种方法.所以一共有90+360+90=540种方法.
例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?
解:(插空法)现将其余4个同学进行全排列一共有 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有 种方法.根据分步计数原理,一共有 =240种方法.
例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?
⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
解:⑴ 根据分步计数原理:一共有 种方法.
⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有 种方法,第二步从四个不同的盒取其中的三个将球放入有 种方法.所以一共有 =144种方法.
例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为 种方法.
例5.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?
解:可以分为两类情况:① 若取出6,则有 种方法;②若不取6,则有 种方法.根据分类计数原理,一共有 + =602种方法.
满意请采纳。
② 排列问题和组合问题有什么区别
排列需要考虑顺序,组合不需要考虑顺序
例如这个问题,一个口袋里有五个白球五个黑球,
问(1)第一次摸出的是黑球,第二次摸出的是白球的概率
(2)两次摸出一个白球一个黑球的概率
③ 小学数学,排列问题
这好象不复是排列问题制,是数列问题,在小学叫找规律问题
(1,2,3,5,8,3,1,4,5,9,4,3,7,0,
7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,
9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,
3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,
1,)1,2,3……
以上是这个数列的规律,其中括号里是一个循环,共有60个数
2009÷60=33……29
所以,第2009个数是0
④ 小学三年级数学简单的排列备课建议稿怎么写
1、题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示院校、指导教师、答辩时间等信息。英文部分一般需要使用TimesNewRoman字体。2、版权声明:一般而言,硕士与博士研究生毕业论文内均需在正文前附版权声明,独立成页。个别本科毕业论文也有此项。3、摘要:要有高度的概括力,语言精练、明确,中文摘要约100—200字(不同院校可能要求不同)。4、关键词:从论文标题或正文中挑选3~5个(不同院校可能要求不同)最能表达主要内容的词作为关键词。关键词之间需要用分号或逗号分开。5、目录:写出目录,标明页码。正文各一级二级标题(根据实际情况,也可以标注更低级标题)、参考文献、附录、致谢等。6、正文:专科毕业论文正文字数一般应在3000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。毕业论文正文:包括前言、本论、结论三个部分。前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。7、致谢:简述自己通过做毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。8、参考文献:在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以按照音序排列(正文中则采用相应的哈佛式参考文献标注而不出现序号)。9、注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。10、附录:对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。有时也常将个人简介附于文后。