『壹』 教师资格证初中数学教案怎么写
一.教材分析
1. 在教材中的作用与地位
《菱形》紧接《矩形》一节之后。纵观整个初中平面几何教材,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。
2.从教材编写角度看
教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出菱形的性质及判定,这样的安排使抽象的定理让学生更易于接受,并能在整个的教学过程中真正享受到探索的乐趣。
3.基于对教材和班级学情的分析,我认为本节课的教学有几个方面需要把握好的:
(1)本节课的课题是:探索菱形的重要性质;
(2)目标是:让学生能在动手实践过程中发现并理解菱形的性质;
(3)重点是:菱形的定义与性质;
(4)教学难点是:菱形性质的灵活运用。
4.根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:
1).知识与技能
(1) 知道菱形在现实生活中有广泛的应用。
(2) 熟记菱形的有关性质和识别条件,并能灵活运用。
2).过程与方法
经历探索菱形的性质和识别条件的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。
3).情感态度价值观
体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
二. 教法分析
1. 教学设计思想
菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。这节课教学时注重学生的探索过程,让观察、猜测、验证,获得知识,培养主动探究的能力。首先由生活中的图片引入,引起学生学习兴趣,发现菱形在生活中的广泛应用,然后设计几个探究性问题,让学生小组讨论,相互交流,形成共识。讲解例题时根据学生特点帮助他们分析题意,灵活运用菱形的性质与识别条件解题。
2.教学方法
针对本节课的特点,我准备采用 “创设情境→观察探索→总结归纳→知识运用” 为主线的教学模式,观察分析讨论相结合的方法。在教学过程中引导学生经过观察、思考、探索、交流获得知识,形成能力。在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作、交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在老师的指导下自始至终处于一种积极思维、主动探究的学习状态。同时借助多媒体进行演示,以增加课堂容量和教学的直观性,更好的理解菱形的性质,解决教学难点。
三.学法指导
在本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的甘苦,领会到成功的喜悦。
四.教学过程
(一) 引入新课
在复习了平行四边形与矩形的性质后创设教学情景。如:出示我国古代文物越王勾践剑的图片,指出菱形花纹,再展示生活中的菱形图案的应用图片。由此引出课题,可以吸引同学的注意,使其产生学习菱形的兴趣。之后,我安排了由平行四边形到菱形的动态演示,得出菱形的定义。随后又展示了一组生活中的有关菱形的图片,使学生认识到菱形在生活中的广泛应用,并欣赏到菱形的图形美。
设计意图:从生活实际出发,首先吸引住学生的注意力,激起学生的学习欲望。著名教育家苏霍姆林斯基说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
(二)菱形性质的探索
菱形性质的探索分成两方面,一是菱形的特殊性(与平行四边形不同的性质);二是菱形的对称性。对于这个地方,主要采取学生自主探究的形式,通过观察思考与分析,同学间互相交流,分小组进行总结归纳。教师在巡视中进行个别指导。在探索过程中,鼓励学生力求寻找多种方法解决问题,同时还可以组织组与组的评比,这样也能培养他们的竞争意识,然后每组由一名学生代表发言,让学生锻炼自己的表达能力,让学生的个性得到充分的展示。最后教师与学生一起总结归纳,得出菱形的性质。
设计理念:这一教学活动的设计主要为了确保学生主体作用得到充分发挥,让学生从被动学到主动学,从接受知识到探索知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一个题目,让他们自己去创造;给学生一个机会,让他们自己去抓住。
(三)题目训练
为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组。
1. 请你当裁判
与定义、性质等相关的一些判断题。
设计意图:让学生着重讲清判断的理由,此题直接运用菱形的定义与性质,起到及时巩固的作用,同时锻炼学生的语言表达能力。
2. 议一议
性质的简单运用。
设计意图:稍微加深,进一步巩固菱形的性质,并能初步运用。
3. 练一练
菱形与直角三角形等知识的综合运用。并由此总结菱形的面积公式。即菱形的面积等于对角线乘积的一半。
设计意图:这组练习包含了例题。要求学生不但可以顺利完成简单的基础填空练习,而且能有条理的写出例题的解题过程。教师及时查漏补缺,规范解题格式。此题完成后,学生已顺利达到教学目标。
4. 学以致用
设计花坛,修建小路,求路长与花坛面积。这是一道实际应用问题。
设计意图:目的是让学生了解数学问题来源于生活实际,同时又运用到实际生活中。让学生充分体验历经困难探索结果而轻松用于实际的快乐感觉。
(四)小结、布置作业
菱形的性质与识别条件,由学生进行小结。布置书上课后习题,体会本节课你所获得的成功经验,写好数学日记,与同学交流。
设计意图:让学生写数学日记这种作业形式,能够培养学生善于归纳总结的能力,逐步养成良好的学习习惯。
『贰』 初中数学因式分解的教案怎么写
首先要介绍因式分解的意义,即什么是因式分解,因式分解和整式乘法有何关系,可以通过版因式分解权和整式乘法个互逆关系来引入;要让学生明白并作出相应的判断;其次要讲解因式分解的方法,由浅入深的介绍基本方法:提取公因式法、应用公式法,再介绍十字相乘法和分组分解法,作为拓展应该介绍广义的十字相乘法,最后通过一定数量的练习提高学生的能力。
『叁』 教师资格考试中初中数学教案怎么写
首先教案应当包括十抄个步骤:
1. 教学目标:(1)理解并掌握某个知识点的概念、性质,会利用其性质解决有关问题。(2)经历探索其性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。(3)通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。(4)培养学生大胆猜想、合理论证的科学精神。
2. 教学重点:探索并运用知识点及其性质。
3. 教学难点:运用转化思想解决有关问题。
4. 课形
5. 课时安排
6. 教学器具
7. 教学方式:创设情境--建立数学模型--应用--拓展提高。
8.教学过程:采用情境创设。
9. 板书设计
10. 课后小结
拓展资料
教案是教师的课前设计蓝图,旨在对教师的教学具有真正的指导帮助作用。因此不要流于形式,更不要只为应付检查,而应充满自主性和个性,是发挥自我的空间。好的教案是教师心血和智慧的结晶,它留下了教学生涯的印记,成为可回顾的一页页历史,成为在教学征程中探索和成长的足印。
『肆』 初中数学教案怎么写
《三角形的内角和》教案
教学内容:教科书第137-138页,练习三十一的第12-15题。
教学目的:1.使学生知道三角形的内角和是180°,并能运用它进行求角的度数的计算。
2.通过让学生猜测并动手验证三角形内角和的过程,培养学生探究、解决问题的能力。
教具准备:课件
课前准备:1.每人用纸剪三个三角形:一个直角三角形、一个锐角三角形、一个钝角三角形,并找出每个三角形的三条边的中点,在中点处用笔点一个点,作上记号。
2.量出剪的三角形每个角的度数,并记在相应角上。
教学过程:
一.复习导入:
1. 导入谈话:前几节课我们学习了有关三角形的知识,谁能说一说什么是三角形?(由三条线段围成的图形叫做三角形)
2. 认识三角形的内角。
课件演示三条线段围成三角形的过程,师指课件:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角)。三角形有几个内角?(三个)
二.探究新知:
(一)三角形内角和的意义:
1.师出示两个直角三角板,问:这两个三角板是什么形状?(三角形)
我们量过这两个三角形的每个内角,谁能说出各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
2.师指第1个三角形:谁来计算出这个三角形三个内角的总度数?
(生回答,师课件板书:(1)90°+60°+30°=180°)
师指上面算式:这个三角形三个内角的总度数是180°,三角形中三个内角的总度数叫做三角形的内角和,所以这个三角形的内角和就是180°。
(二)特殊三角形的内角和。
1.那么第2个三角形的内角和是多少度?
(生回答,师课件板书:(2)90°+45°+45°=180°)
我们还认识了等边三角形,那么等边三角形的内角和是多少度 ?
(生回答,师课件板书:(3)60°+60°60°=180°)
2.观察、发现、猜测:
(1)观察以上三个三角形的内角和,你有什么发现?(内角和都是180°)
(2)由此你想到什么?(是否所有三角形的内角和都是180°?)
师:那现在我们来猜测一下,认为所有三角形的内角和都是180°的请举手。认为所有三角形的内角和不一定都是180°的请举手。
师:对于这个问题,大家有两种猜测,那么究竟哪种意见是正确的呢?怎么办? (想办法证明)
(三)操作、验证
1.计算法证明:
(1)让学生拿出课前准备好的3个三角形纸片,分别把锐角三角形、直角三角形、钝角三角形的内角和计算出来,然后以4人小组为单位交流内角和的度数,看看有什么发现。
(2)指名汇报各组度量和计算内角和的结果(如果有实物投影仪,最好把生量、算的情况投出来更好)。
(3)观察:从大家量、算的结果中,你发现什么?
(4)归纳:大家算出的三角形内角和都等于或接近180°(有的大于180°,有的小于180°,但都很接近180°)
(5)进一步思考、讨论:
你认为以上计算结果,能否证明三角形的内角和就是180°?
生两种意见:一是能,计算结果不正好得180°的,是量、算度数时出现了点偏差,如果没有偏差,应该正好是180°;另一种是还不能,因为结果不都正好是180°,还不能使人信服,还需要进一步证明。
2.折叠法证明:
(1)师:刚才我们计算三角形的内角和都是先测量每个角的度数再相加的,而在量每个内角度数时,只要有一点偏差,内角和就有误差了,也就是不准确了。所以大家算出的三角形内角和的结果有差别,用这种方法证明也就不能很让人信服了。那么我们能不能不用量、算度数的方法,而是换一种方法,来证明三角形的内角和究竟是不是180°呢?请同学们拿出你剪的三角形,小组同学共同来研究、研究吧。
(2)生小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、提示:想一想,怎样可以把三角形的三个内角拼在一起?三个内角能拼成一个什么角?)
(3)生汇报验证三角形内角和。
a.验证直角三角形的内角和(如有实物投影,直接在实物投影上展示最好)。
方法如下 :图1、图2两种。
或
图1折法中三个角拼在一起组成了一个什么角?我们可以得出什么结论?
引导生归纳出:直角三角形的内角和是180°
图2折法能证明直角三角形内角和是180°吗?说说道理。
从图2折法我们还可以得出什么结论?
引导生归纳出:直角三角形中两个锐角的和是180°。
b.验证锐角三角形的内角和。
折法同上直角三角形的方法1。
你发现了什么?
归纳:锐角三角形的内角和也是180°。
c.验证钝角三角形的内角和。
让学生用同样的方法折一折,如下图所示:
引导学生归纳出:钝角三角形的内角和也是180°。
提问:刚才我们验证了直角三角形、锐角三角形和钝角三角形的内角和都是180°,那么,我们能不能说任何三角形的内角和都是180°呢?
引导学生明确:由于这三种三角形包括了所有的三角形,所以可以得出结论:任何三角形的内角和都等于180°。(板书:三角形的内角和是180°)。
(四)应用三角形内角和解决问题。
1.第138页的例题。
出示题目,让学生试做。
指名汇报怎样列式计算的。两种方法均可。
(1)∠3=180°-78°-44°=58°
(2)∠3=180°-(78°+44°)=58°
2.完成第138页的“做一做”的第2题,生独立完成,汇报时对第2种做法要说出根据并提出表扬:
(1)180°-90°-65°=25°或180°-(90°+65°)=25°
(2)90°-65°=25°
三.拓展、提高。
1.在一个等腰三角形中,一个底角是50°,求顶角的度数。
2.在一个等腰三角形中,一个顶角是50°,求一个底角的度数。
以上两题生独立完成,再指生汇报说怎样想的(有困难可小组交流)。
3.练习三十一的第16题。
小组讨论后汇报并说明根据:
(1) 长方形和正方形的内角和是:90°×4=360°
(2) 长方形和正方形的内角和是:180°×2=360°
其中第2种方法是:连接长方形、正方形一组对角顶点,把长方形、正方形分成两个三角形,两个三角形的内角和就是长方形或正方形的内角和。
4. 练习三十一的第17题。
生小组探究试做,汇报时说理由:
四边形内角和:180°×2=360°
六边形内角和:180°×4=720°
四.课堂小结。
板书设计:
三角形的内角和
(2)验证锐角三角形的内角和。
∠1+∠2+∠3=?
(3)验证钝角三角形的内角和。
(1)验证直角三角形的内角和。
三角形的内角和是180°
附:评价表。
评价学生数学学习的方法是多样的,每种评价方式都有自己的特点,评价是应结合评价内容与学生学习特点合理进行选择。
我在上了《三角形的内角和》后,设计了这样的一组活动评价表:
表一(自评)
评价内容
优秀
良好
一般
猜想、验证的探究能力
对三角形内角和的理解
独立解答习题的能力
表二(小组互评)
评价内容
优秀
良好
一般
提出问题的能力
独立探究能力
发言的积极性和条理性
小组合作学习的表现
这样设计的自评与互评表,不但评知识的掌握,而且评学习的态度、学习的能力等。通过评价,使学生获得了成功的体验,增强了自信心,为自主探究习惯的养成奠定了基础。
『伍』 初中数学试讲教案怎么写
《三角形的中位线》的教案模板,让大家参考参考。
教学目标:版
1、理解并掌握三角形权中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。
4、培养学生大胆猜想、合理论证的科学精神。教学重点:探索并运用三角形中位线的性质。
教学难点:
运用转化思想解决有关问题。教学方法:创设情境——建立数学模型——应用——拓展提高教学过程:情境创设:测量不可达两点距离。
探索活动:
活动一:剪纸拼图。操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。观察、猜想: 四边形BCFD是什么四边形。探索: 如何说明四边形BCFD是平行四边形?
活动二:探索三角形中位线的性质。应用练习及解决情境问题。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:作业: P134 /习题3.6 1、3
『陆』 初中数学课堂教学教案
第五章 反比例函数
教材分析:
函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为后继学习二次函数等产生积极的影响。本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念。通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义。
学情分析:
1.已有的生活体验
2.对以前学过的函数、一次函数、正比例函数有关知识的初步理解。
教学目标:
(一)知识与技能
1.结合具体情境体会反比例函数的意义。
2.能根据已知条件确定反比例函数表达式。
(二)过程与方法
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
(三)情感态度与价值观
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.
教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念.
教学难点:领会反比例函数的意义,理解反比例函数的概念.
教学方法:教师引导学生,小组合作、探究式进行归纳.
1、通过关注日常生活中所涉及的两个变量之间的相依关系,加深对函数关系的理解。
2、通过具体问题,讨论总结反比例函数的概念。
教具准备:多媒体课件
教学过程
(一)创设情境,引入新课
1、把一张一百元换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:
换成的元数x(元) 50 20 10 5 2 1
换成的张数y(张)
提问:
1.你会用含有X的代数式表示Y吗?
2.当换成的元数X变化时,换成的张数Y会怎样变化呢?(从身边生活中体会数学,此情境源自生活。)
3.变量X是Y的函数吗?为什么?(回顾函数的相关知识)
2、还记得以往学习的函数吗?(回顾一次函数、正比例函数的表达式。)
与一次函数和正比例函数不同,我们今天要学习的函数是反比例函数。
(二)互动探究,学习新课
例1.我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)请你用含有R的代数式表示I;(2)利用你写出的关系式完成下表:
R/Ω 20 40 60 80 100
I/A
学生填表完成,提出当R越来越大时,I是怎样变化的?当R越来越小呢?(3)变量I是R的函数吗?为什么?(体现数理学科知识的联系)
思考:舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.(学以致用)
例3.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t(h)与行驶的平均速度V(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?(常见的行程问题中蕴含的函数关系)
(三)学生分组交流讨论
我们再看例子: 两个变量x和y的乘积等于-6,用函数关系式表示出来是 ,思考:变量x和y之间的关系是什么?
提出问题:①变量之间的关系具有什么特点?引导学生得出:两个变量的乘积等于非零常数.②如何给反比例函数下定义?
教师总结并和学生一起探索出反比例函数的概念:
一般地,如果两个变量x,y之间的关系可以表示成: (k为常数,K≠0)的形式,那么称y是x的反比例函数。
强调在理解概念时要注意:①常数K≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
(四)课堂练习:(巩固反比例函数的概念)
1:下列哪些式子表示y是x的反比例函数?为什么?并且说明K是多少?
(1) (2) (3) (4) (5) (6)
2. 当m为何值时,函数 是反比例函数?(熟悉 形式)
3、若 是反比例函数,则m、n的取值是( )
A、 B、 C、 D、
4、下列命题中,y与x成反比例关系的是( )
A.正方形的面积y与它的边长x B.矩形的面积为定值a,则矩形的长y与宽x
C.三角形的面积y与底边长x D.圆的面积y周长x
5. P144做一做1-3(实物展示:加深对反比例函数意义的理解)
6. 数学来源于生活,请同学在生活中找出类似的例子。(分组交流讨论,体会数学与生活的密切联系,并让学生树立模型化思想。)
(五)总结、提高。
今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,K≠0)同时要注意几点::①常数K≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
(六)布置作业:P145-1461、2、4
(七)板书设计:
反比例函数
1、定义:一般地,如果两个变量x,y之间的关系可以表示成: (k为常数,K≠0)的形式,那么称y是x的反比例函数。
2、注意:
①常数K≠0;
②自变量x不能为零(因为分母为0时,该式没意义);
③当 可写为 时注意x的指数为—1。
④确定了k,这个函数就确定了。
自
由
空
间
(供作教学过程演练用)
(八)、课后反思
『柒』 求几套初中数学教案模板
§3.2中心对称与中心对称图形(第一课时)
一、教学目标:
1.知识与技能:
1、通过具体实例理解中心对称和中心对称图形的概念。
2、理解中心对称的基本性质:连接对称点的线段经过对称点并被对称中心平分。
3、能较熟练地画出一个图形关于某点成中心对称的图形。
2.过程与方法:
通过实际生活的例证,加深对中心对称的认识,并以此激发学生的探索精神.
3.情感态度与价值观:
1、教材通过学生所熟悉的生活现象以及已有的轴对称和旋转对称的相关知识,进一步揭示了事物之间、事物内部的另一种对称美。
2、中心对称与人的现实生活密切相关,它对于提高学生的审美能力以及培养学生认识美、创造美有着深远的影响。
二、教学重、难点:
1、重点:
能识别中心对称图形和探索成中心对称的两个图形的基本性质。它对培养学生的审美能力,以及培养学生的动手能力非常有意义。
2、难点:
探索图形之间的变换关系,发展图形的分析能力。学生对本节渗透的旋转变换的数学思想比较生疏,不易接受,教学时采用结合图形实例来突破这一难点。
三、设计思路
通过具体的中心对称实例,让学生经历观察.操作.分析等数学活动,从而让学生认识中心对称,知道中心对称的性质,最后通过画图操作,进一步加深对性质的理解,同时掌握利用中心对称的基本性质作图的技能。
四、教学过程:
教师活动 学生活动 自评
一、情境引入
利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转180度,能与另一个重合吗?
二、新课讲授
⒈ 引出概念:
如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点
说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。
⒉ 探索活动
活动一 用一张透明纸覆盖在图3-5上,描出四边形ABCD。用大头针钉在点O处,将四边形ABCD绕点O旋转180度
问题一:四边形ABCD与四边形A'B'C'D'关于点O成中心对称吗?
问题二:在图3-5中,分别连接关于点O的对称点A和A'、B和B'、C和C'、D和D'。你发现了什么?
成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
活动二 中心对称与轴对称进行类比
轴对称 中心对称
有一条对称轴——直线 有一个对称中心——点
图形沿对称轴对折(翻转180度)后重合 图形绕对称中心旋转180度后重合
对称点的连线被对称轴垂直平分 对称点连线经过对称中心,且被对称中心平分
练一练 课本78页练习1
活动三 利用中心对称基本性质作图
操作1 作点关于点的对称点
操作2 作线段关于点成中心对称的图形
操作3 作三角形关于点成中心对称的图形
活动四 课本78页练习2
试试看 把课本78页练习2稍改一下:其他条件不变,把点D放到ΔABC内部。
三、课堂小结
⒈ 经历观察、操作等数学活动,通过具体实例认识中心对称,探索中心对称的性质;
⒉ 经历利用中心对称基本性质作图的过程,掌握作图的技能。
四、作业布置
巩固练习:
1、判断下列图形:线段、正三角形、圆、平行四边形、长方形、正方形、菱形、等腰梯形。
⑴是轴对称图形的有 ;
⑵是中心对称图形的有 ;
⑶既是中心对称图形,又是轴对称图形的有 。
2、在纸上写下这5个大写的英文字母,观察它们:A C F H N
⑴是轴对称图形的有 ;
⑵是中心对称图形的有 ;
⑶既是中心对称图形,又是轴对称图形的有 。
3、游戏:大家将如图所示的四张纸牌旋转180°后,看哪一张跟原来不一样?
学生思考并讨论
学生思考口答
学生讨论交流
学生自己动手操作
学生总结 通过现实情境激发学生的好奇心和主动学习的欲望。
通过对生活中的中心对称现象的描述,加深了对中心对称的理解,锻练了用数学语言进行表达的能力
让学生在操作与观察的基础上,发现中心对称的两个图形具有(一般地)旋转的一切性质,且具有特殊的性质——对称点连线经过对称中心,且被对称中心平分
中心对称与轴对称都是指两个图形按某种规则运动能互相重合的特殊位置关系,教学中,将他们进行类比,进一步加深对中心对称的理解.
学习概念后,把概念直接运用到题目中,这是一个从一般到特殊的过程,也是数学学习的一大特点。本题是中心对称性质的直接运用。
这两个操作活动,是在第1个操作活动基础上的逐步加深。培养学生对问题的分析能力,和对知识的迁移能力。
在学生看过与简单做过的基础上,加深对作图技能的掌握
拓展与提高,使学有余力的学生得到更高的发展。
小结新知,加深记忆。最好让学生自己总结所学内容。
加强练习,巩固新知
课后反思: